Сердце химии

Добро пожаловать на наш портал

На нашем сайте ежедневно публикуются десятки качественных и свежих материалов, которые Вы можете скачать абсолютно бесплатно. Рекомендуем Вам добавить Наш сайт в закладки, а также подписаться на RSS ленту, чтобы не пропускать интересных новостей.
Главная Друзья сайта Главная Контакты Карта сайта

Перевести страницу

Мини-чат

ОК

Опрос

Какие впечатления остались от нашего сайта
javascript:; javascript:;
Всего ответов: 78

Мудрые говорят

Главная » Файлы » Пособие для вузов » Пособие для вузов

V. Физическая химия 2 часть

 Просмотров: 2098 Автор: Vlad
 (Рейтинг: 2.0)

5. Электрохимические процессы

5.1. Электродные потенциалы. Гальванические элементы. ЭДС

При соприкосновении двух химически или физически разнородных материалов (металл 1 (проводник I рода) – металл 2 (проводник I рода), металл (проводник I рода) – раствор соли металла (проводник II рода), раствор электролита 1 (проводник II рода) – раствор электролита 2 (проводник II рода) и т. д.) между ними возникает двойной электрический слой (ДЭС). ДЭС является результатом упорядоченного распределения противоположно заряженных частиц на границе раздела фаз.

Образование ДЭС приводит к скачку потенциала φ, который в условиях равновесия металл (проводник I рода) – раствор соли металла (проводник II рода) называется галъвани-потенциалом.

Система: металл (Me) – водный раствор соли данного Me – называется электродом или полуэлементом и схематически изображается следующим образом:

Меn+ | Me

Электрод (п/э) записывается так, чтобы все вещества, находящиеся в растворе, были помещены слева, а электродный материал – справа от вертикальной черты.

φ > 0, если на электроде протекает реакция восстановления Меn+ + nе¯ ↔ Ме0,

φ < 0, если на электроде протекает реакция окисления Ме0 ↔ Меn+ + nе¯.

Электродным потенциалом ЕМеn+/Ме называется равновесная разность потенциалов, возникающая на границе фаз проводник I рода/проводник II рода и измеренная относительно стандартного водородного электрода.

уравнение Нернста, где n – число электронов, участвующих в электродной реакции; СМеn+ – концентрация катионов; ЕМеn+/Ме – стандартный электродный потенциал.

Контактный потенциал φχ – равновесный скачек потенциалов, возникающий на границе раздела двух проводников I рода.

Диффузионный потенциал φдиф – равновесная разность потенциалов, возникающая на границе фаз проводник II рода/проводник II рода.

Гальванический элемент (г. э.) – электрическая цепь, состоящая из двух или нескольких п.э. и производящая электрическую энергию за счет протекающей в ней химической реакции, причем стадии окисления и восстановления химической реакции пространственно разделены.

Электрод, на котором при работе гальванического элемента протекает процесс окисления, называется анодом, электрод, на котором идет процесс восстановления, – катодом.

Правила ИЮПАК для записи гальванических элементов и реакций, протекающих в них

1. В г. э. работа производится, поэтому ЭДС элемента считается величиной положительной.

2. Величина ЭДС гальванической цепи Е определяется алгебраической суммой скачков потенциала на границах раздела всех фаз, но так как на аноде протекает окисление, то ЭДС рассчитывают, вычитая из числового значения потенциала катода (правого электрода) значение потенциала анода (левого электрода) – правило правого полюса. Поэтому схему элемента записывают так, чтобы левый электрод был отрицательным (протекает окисление), а правый – положительным (протекает процесс восстановления).

3. Границу раздела между проводником I рода и проводником II рода обозначают одной чертой.

4. Границу между двумя проводниками II рода изображают пунктирной чертой.

5. Электролитный мостик на границе двух проводников II рода обозначают двумя пунктирными чертами.

6. Компоненты одной фазы записывают через запятую.

7. Уравнение электродной реакции записывают так, чтобы слева располагались вещества в окисленной форме (Ох), а справа – в восстановленной (Red).

Гальванический элемент Даниэля-Якоби состоит из цинковой и медной пластин, погруженных в соответствующие растворы ZnSO4 и CuSO4, которые разделены солевым мостиком с раствором KCl: электролитический мостик обеспечивает электрическую проводимость между растворами, но препятствует их взаимной диффузии.

(-) Zn | Zn 2+:: Cu 2+| Cu (+)

Реакции на электродах:

Zn0 → Zn2+ + 2e¯
Cu2+ + 2е¯ → Cu0

Суммарный окислительно-восстановительный процесс:

Cu2+ + Zn0 → Cu0 + Zn2+

Работа тока гальванического элемента (и, следовательно, разность потенциалов), будет максимальна при его обратимой работе, когда процессы на электродах протекают бесконечно медленно и сила тока в цепи бесконечно мала.

Максимальная разность потенциалов, возникающая при обратимой работе гальванического элемента, есть электродвижущая сила (ЭДС) гальванического элемента Е.

ЭДС элемента EZn/Cu = φCu2+/Cu + φZn2+/Zn + φк + φдиф.

Без учета φдиф и φк: EZn/Cu = φCu2+/Cu + φZn2+/Zn = ЕCu2+/Cu + Е Zn2+/Zn – гальванические элементы, состоящие из двух одинаковых металлических электродов, опущенных в растворы соли этого металла с различными концентрациями С1 > С2. Катодом в этом случае будет являться электрод с большей концентрацией, т. к. стандартные электродные потенциалы обоих электродов равны.

Концентрационные цепи

Единственным результатом работы концентрационного элемента является перенос ионов металла из более концентрированного раствора в менее концентрированный.

Работа электрического тока в концентрационном гальваническом элементе – это работа диффузионного процесса, который проводится обратимо в результате пространственного разделения его на два противоположных по направлению обратимых электродных процесса.

5.2. Классификация электродов

Электроды первого рода. Металлическая пластинка, погруженная в раствор соли того же металла. При обратимой работе элемента, в который включен электрод, на металлической пластинке идет процесс перехода катионов из металла в раствор либо из раствора в металл.

Электроды второго рода. Металл покрыт малорастворимой солью этого металла и находится в растворе, содержащем другую растворимую соль с тем же анионом. Электроды этого типа обратимы относительно аниона.

Электроды сравнения – электроды с точно известными и воспроизводимыми значениями потенциалов.

Водородный электрод представляет собой платиновую пластинку, омываемую газообразным водородом, погруженную в раствор, содержащий ионы водорода. Адсорбируемый платиной водород находится в равновесии с газообразным водородом.

Pt, Н2 / Н+

Электрохимическое равновесие на электроде:

+ + 2е¯ ↔ Н2.

Потенциал стандартного водородного электрода (с активностью ионов Н+ 1 моль/л и давлением водорода 101,3 кПа) принят равным нулю.

Электродный потенциал нестандартного водородного электрода:

Каломельный электрод состоит из ртутного электрода, помещенного в раствор KCl, определенной концентрации и насыщенный каломелью Hg2Cl2:

Hg / Hg2Cl2, KCl

Каломельный электрод обратим относительно анионов хлора

Хлорсеребряный электрод – обратим относительно анионов хлора:

Ag / AgCl, KCl

Если раствор KCl – насыщенный, то EAgCl = 0,2224 – 0,00065(t – 25), В.

Индикаторные электроды. Электроды, обратимые относительно иона водорода, используются на практике для определения активности этих ионов в растворе.

Хингидронный электрод представляет собой платиновую проволоку, опущенную в сосуд с исследуемым раствором, в который предварительно помещают избыточное количество хингидрона С6Н4O2 • С6Н4(OH)2 – соединения хинона С6Н4O2 и гидрохинона С6Н4(OH)2, способных к взаимопревращению в равновесном окислительно-восстановительном процессе, в котором участвуют ионы водорода:

С6Н4O2 + 2H+ + 2е¯ → С6Н4(OH)2

Наиболее часто употребляется стеклянный электрод в виде трубки, оканчивающейся тонкостенным стеклянным шариком. Шарик заполняется буферным раствором с определенным значением рН, в который погружен вспомогательный электрод (обычно хлорсеребряный). Для измерения рН стеклянный электрод погружают в исследуемый раствор в паре с электродом сравнения. Шарик стеклянного электрода предварительно обрабатывают в течение длительного времени раствором кислоты. При этом ионы водорода внедряются в стенки шарика, замещая катионы щелочного металла. Электродный процесс сводится к обмену ионами водорода между двумя фазами – исследуемым раствором и стеклом: Нр-р ↔ Нст+.

Стандартный потенциал Ест0 для каждого электрода имеет свою величину, которая со временем изменяется; поэтому стеклянный электрод перед каждым измерением рН калибруется по стандартным буферным растворам с точно известным рН.

Окислительно-восстановите льные электроды

Электрод, состоящий из инертного проводника 1-го рода, помещенного в раствор электролита, содержащего один элемент в различных степенях окисления, называется окислительно-восстановительным или редокс-электродом.

Электродная реакция: Охn+ + nе¯ ↔ Red.

В данном случае инертный Me принимает косвенное участие в электродной реакции, являясь посредником передачи электронов от восстановленной формы Me (Red) к окисленной (Ох) или наоборот.

6. Поверхностные явления и адсорбция

6.1. Поверхностное натяжение и адсорбция по Гиббсу

Поверхностными явлениями называют процессы, происходящие на границе раздела фаз и обусловленные особенностями состава и строения поверхностного (пограничного) слоя.

Gs = σs,

где Gs – поверхностная энергия Гиббса системы, Дж; σ – коэффициент пропорциональности, называемый поверхностным натяжением, Дж/м2; s – межфазная поверхность, м2.

Поверхностное натяжение о есть величина, измеряемая энергией Гиббса, приходящейся на единицу площади поверхностного слоя. Оно численно равно работе, которую необходимо совершить против сил межмолекулярного взаимодействия для образования единицы поверхности раздела фаз при постоянной температуре.

Из модели Дюпре, поверхностное натяжение равно силе, стремящейся уменьшить поверхность раздела и отнесенной к единице длины контура, ограничивающего поверхность

Способность растворенных веществ изменять поверхностное натяжение растворителя называется поверхностной активностью g:

Классификация веществ по влиянию на поверхностное натяжение растворителя

1. Поверхностно-активные вещества (ПАВ) – понижают поверхностное натяжение растворителя (σр-р < σ0) g > 0 (по отношению к воде – органические соединения дифильного строения).

2. Поверхностно-инактивные вещества (ПИВ) – незначительно повышают поверхностное натяжение растворителя (σр-р > σ0) g < 0 (неорганические кислоты, основания, соли, глицерин, α-аминокислоты и др).

3. Поверхностно-неактивные вещества (ПНВ) – практически не изменяют поверхностного натяжения растворителя (σр-р = σ0) g = 0 (по отношению к воде веществами являются сахароза и ряд других).

Правило Дюкло-Траубе: в любом гомологическом ряду при малых концентрациях удлинение углеродной цепи на одну группу CH2 увеличивает поверхностную активность в 3–3,5 раза:

Для водных растворов жирных кислот (уравнение Шишковского):

где b и К – эмпирические постоянные, b одинаково для всего гомологического ряда, К увеличивается для каждого последующего члена ряда в 3–3,5 раза.

Процесс самопроизвольного изменения концентрации какого-либо вещества у поверхности раздела двух фаз называется адсорбцией. Адсорбентом называется вещество, на поверхности которого происходит изменение концентрации другого вещества – адсорбата.

Изотерма адсорбции Гиббса:

Избыток адсорбата в поверхностном слое по сравнению с его первоначальным количествам в этом слое характеризует избыточную, или так называемую гиббсов-скую, адсорбцию (Г).

6.2. Адсорбция на границе твердое тело – газ

Физическая адсорбция возникает за счет ван-дер-ваальсовых взаимодействий адсорбированной молекулы с поверхностью, характеризуется обратимостью и уменьшением адсорбции при повышении температуры, т. е. экзотермичностью (тепловой эффект физической адсорбции обычно близок к теплоте сжижения адсорбата 10–80 кДж/моль).

Химическая адсорбция (хемосорбция) осуществляется путем химического взаимодействия молекул адсорбента и адсорбата, обычно необратима; является локализованной, т. е. молекулы адсорбата не могут перемещаться по поверхности адсорбента. Так как хемосорбция является химическим процессом, требующим энергии активации порядка 40-120 кДж/моль, повышение температуры способствует ее протеканию.

Уравнение Генри (мономолекулярная адсорбция на однородной поверхности при низких давлениях или малых концентрациях):

Г = Кс или Г = Кр,

К – константа адсорбционного равновесия, зависящая от природы адсорбента и адсорбата; С, р – концентрация растворенного вещества или давление газа.

Теория мономолекулярной адсорбции Лэнгмюра

1. Адсорбция является локализованной и вызывается силами, близкими к химическим.

2. Адсорбция происходит на однородной поверхности адсорбента.

3. На поверхности может образоваться только один слой адсорбированных молекул.

4. Процесс адсорбции является обратимым и равновесным.

Изотерма адсорбции Лэнгмюра:

где Г0 – емкость монослоя – константа, равная предельной адсорбции, наблюдаемой при относительно больших равновесных концентрациях, моль/м2b – константа, равная отношению константы скорости адсорбции и константе скорости десорбции.

Уравнение Фрейндлиха (адсорбция на неоднородной поверхности): Г = КФсn, где. КФ – константа, численно равная адсорбции при равновесной концентрации, равной единице; n – константа, определяющая кривизну изотермы адсорбции (n = 0,1–0,6).

Молекулярная адсорбция из растворов:


где С0 – исходная концентрация адсорба-та; С – равновесная концентрация адсорбата; V – объем раствора адсорбата; m – масса адсорбента.

Площадь S0, приходящаяся на одну молекулу в насыщенном адсорбционном слое, – посадочная площадка:

м2/молекула.

Толщина адсорбционного слоя:

где М – молекулярная масса ПАВ; ρ – плотность ПАВ.

Правило Ребиндера: на полярных адсорбентах лучше адсорбируются полярные ад-сорбаты из малополярных растворителей; на полярных адсорбентах – неполярные адсорбаты из полярных растворителей.

Ориентация молекул ПАВ на поверхности адсорбента схематически изображена на рисунке:

6.3. Адсорбция из растворов электролитов

Обменная адсорбция – процесс обмена ионов между раствором и твердой фазой, при котором твердая фаза поглощает из раствора ионы какого-либо знака (катионы либо анионы) и вместо них может выделять в раствор эквивалентное число других ионов того же знака. Ввсегда специфична, т. е. для данного адсорбента к обмену способны только определенные ионы; обменная адсорбция обычно необратима.

Правило Пакета-Пескова-Фаянса: на поверхности кристаллического твердого тела из раствора электролита специфически адсорбируется ион, который способен достраивать его кристаллическую решетку или может образовывать с одним из ионов, входящих в состав кристалла, малорастворимое соединение.

7. Коллоидные (дисперсные) системы

Коллоидной (дисперсной) системой называется гетерогенная система, в которой одна из фаз представлена мелкими частицами, равномерно распределенными в объеме другой однородной фазы. Это ультрамикрогетерогенные системы, состоящие из частиц дисперсной фазы – совокупности раздробленных частиц, размер которых лежит в пределах 10-9-10-5 м, и непрерывной дисперсионной среды, в которой распределены эти частицы.

Признаки коллоидного состояния вещества – дисперсность и гетерогенность.

Степень дисперсности δ – величина, обратная среднему диаметру или, для несферических частиц, обратная среднему эквивалентному диаметру d -1):

Удельная поверхность – отношение общей площади поверхности дисперсной фазы SДФ к ее общему объему или к ее массе:

7.1. Классификация и способы получения дисперсных систем

Классификация по агрегатному состоянию фаз

Дисперсной системы, у которой и дисперсная фаза, и дисперсионная среда являются газами, не существует, так как газы неограниченно растворимы друг в друге.

Классификация систем по размеру частиц дисперсной фазы:

1) высокодисперсные, 10-9_10-7 м (рубиновое стекло);

2) среднедисперсные, 10-7_10-5 м (растворимый кофе);

3) грубодисперсные, > 10-5 м (капли дождя).

Способы получения коллоидных систем
Диспергирование

Физическое диспергирование: механическое измельчение с использованием коллоидных мельниц; электрическое распыление веществ; диспергирование ультразвуком и другие методы. Чтобы не дать образовавшимся частицам слипаться, диспергирование производят в присутствии стабилизатора – электролита или вещества, адсорбирующегося на границе раздела фаз (поверхностно-активные вещества).

Химическое диспергирование (пептизация): перевод в коллоидное состояние свежеприготовленного осадка с помощью пептизатора.

Конденсация

Физическая конденсация: 1) метод замены растворителя, который заключается в том, что в истинный раствор вещества добавляется смешивающаяся с растворителем жидкость, в которой само вещество малорастворимо; вследствие понижения растворимости вещества в новом растворителе раствор становится пересыщенным, и часть вещества конденсируется, образуя частицы дисперсной фазы; 2) метод конденсации из паров; исходное вещество находится в паре; при понижении температуры пар становится пересыщенным и частично конденсируется, образуя дисперсную фазу.

Химическая конденсация: любая химическая реакция, в результате которой образуется плохо растворимое соединение; чтобы при этом получить коллоидный раствор, реакцию необходимо вести в разбавленном растворе при небольшой скорости роста частиц, одно из исходных веществ берется в избытке и является стабилизатором.

7.2. Оптические свойства дисперсных систем

При падении света на дисперсную систему могут наблюдаться следующие явления:

прохождение света частицами дисперсной фазы (наблюдается для прозрачных систем, в которых частицы много меньше длины волны падающего света (r << λ);

преломление света частицами дисперсной фазы (если эти частицы прозрачны);

отражение света частицами дисперсной фазы (если частицы непрозрачны);

преломление и отражение света наблюдается для систем, в которых частицы много больше длины волны падающего света (r >> λ). Визуально это явление выражается в мутности этих систем;

рассеяние света наблюдается для систем, в которых частицы дисперсной фазы меньше, но соизмеримы с длиной волны падающего света (r ≈ 0,1 λ);

адсорбция (поглощение) света дисперсной фазой с превращением световой энергии в тепловую.

Уравнение Рэлея:

где I, I0 – интенсивность рассеянного и падающего света; V – объем одной частицы; ν – частичная концентрация (число частиц в единице объема); λ – длина волны; n1, n0 – показатели преломления частиц и среды соответственно.

Явление различной окраски коллоидного раствора в проходящем и рассеянном (отраженном) свете называется опалесценцией. В случае окрашенных растворов происходит наложение собственной окраски и окраски, вызванной опалесценцией (явление дихроизма света).

7.3. Молекулярно-кинетические свойства

Для коллоидных систем характерно броуновское движение – непрерывное беспорядочное движение частиц микроскопических и коллоидных размеров. Это движение тем интенсивнее, чем выше температура и чем меньше масса частицы и вязкость дисперсионной среды.

Диффузия – самопроизвольно протекающий процесс выравнивания концентрации частиц.

Закон Фика:

Вследствие большого размера коллоидных частиц диффузия в коллоидных системах замедленна по сравнению с истинными растворами.

Осмотическое давление:

где mобщ – масса растворенного вещества; m – масса одной частицы; V – объем системы; NA – число Авогадро; Т – абсолютная температура; ν – частичная концентрация; k – постоянная Больцмана.

Для сферических частиц:

где νm – масса дисперсной фазы в единице объема раствора; ρ – плотность дисперсионной среды; r – радиус частиц.

7.4. Строение мицеллы

Мицеллой лиофобной системы называется гетерогенная микросистема, которая состоит из микрокристалла дисперсной фазы, окруженного сольватированными ионами стабилизатора.

Потенциалопределяющими называются ионы, адсорбирующиеся на поверхности частички твердой фазы (агрегата) и придающие ей заряд. Агрегат вместе с потенциалопределяющими ионами составляет ядро мицеллы.

Противоионы – ионы, группирующиеся вблизи ядра мицеллы.

Расположение противоионов в дисперсионной среде определяется двумя противоположными факторами: тепловым движением (диффузией) и электростатическим притяжением.

Противоионы, входящие в состав плотного адсорбционного слоя, называются «связанными» и вместе с ядром составляют коллоидную частицу, или гранулу. Коллоидная частица (гранула) имеет заряд, знак которого обусловлен знаком заряда потенциалопределяющих ионов.

Противоионы, образущие диффузный слой, – «подвижные», или «свободные».

Коллоидная частица с окружающим ее диффузным слоем сольватированных про-тивоионов составляют мицеллу. В отличие от коллоидной частицы мицелла электронейтральна и не имеет строго определенных размеров.

В мицелле с ионным стабилизатором на границе раздела фаз имеется ДЭС, возникает разность потенциалов между дисперсной фазой и дисперсионной средой – термодинамический потенциал ф (межфазный), который определяется свойствами данной дисперсной системы, а также зарядом и концентрацией потенциалопределяющих ионов, адсорбированных на твердой фазе.

Перемещение заряженных коллоидных частиц в неподвижной жидкости к одному из электродов под действием внешнего электрического поля называется электрофорезом.

Поверхность, по которой происходит перемещение, называется поверхностью скольжения. Величина скачка потенциала на границе фаз, находящихся в движении относительно друг друга при электрофорезе и в броуновском движении, т. е. на поверхности скольжения, называется электрокинетическим или ζ-потенциалом (дзета-потенциал).

7.5. Устойчивость и коагуляция

Устойчивость дисперсных систем характеризует способность дисперсной фазы сохранять состояние равномерного распределения частиц во всем объеме дисперсионной среды.

Существует два вида относительной устойчивости дисперсных систем: седимента-ционная и агрегативная.

Седиментационная устойчивость – способность системы противостоять действию силы тяжести. Седиментация – это оседание частиц в растворе под действием силы тяжести.

Условие седиментационного равновесия: частица движется с постоянной скорость, т. е. равномерно, сила трения уравновешивает силу тяжести:

6πηrU = 4/3πr3(ρ – ρ0)g,

где ρ – плотность дисперсной фазы, ρ0 – плотность дисперсионной среды, g – ускорение силы тяжести, η – вязкость среды.

Агрегативная устойчивость характеризует способность частиц дисперсной фазы противодействовать их слипанию между собой и тем самым сохранять свои размеры.

При нарушении агрегативной устойчивости происходит коагуляция – процесс слипания частиц с образованием крупных агрегатов. В результате коагуляции система теряет свою седиментационную устойчивость, т. к. частицы становятся слишком крупными и не могут участвовать в броуновском движении.

Причины коагуляции:

> изменение температуры;

> действие электрического и электромагнитного полей;

> действие видимого света;

> облучение элементарными частицами;

> механическое воздействие;

> добавление электролита и др.

Наибольший практический интерес вызывает коагуляция электролитами.

Виды коагуляции электролитами

Концентрационная коагуляция наступает под действием индифферентных электролитов. Индифферентным называется электролит, при введении которого межфазный потенциал <р не изменяется. Данный электролит не содержит таких ионов, которые были бы способны к специфической адсорбции на частицах по правилу Па-нета-Фаянса, т. е. не способны достраивать кристаллическую решетку агрегата:

Состояние, при котором диффузный слой исчезнет и коллоидная частица становится электронейтральной, называется изоэлектрическим – электрокинетический потенциал (ζ) равен нулю, наступает коагуляция. Формула мицеллы в таком состоянии приобретает вид: {m[AgI]nAg+nNO3¯}0.

Нейтрализационная коагуляция происходит при добавлению к золю неиндифферентного электролита. Неиндифферентным называется электролит, способный изменить межфазный (φ) и линейно с ним связанный электрокинетический (ζ) потенциалы, т. е. данный электролит содержит ионы, способные специфически адсорбироваться на поверхности агрегата, достраивать его кристаллическую решетку или химически взаимодействовать с потенциалоп-ределяющими ионами.

Обратимый процесс, при котором коагулят вновь переходит в коллоидное состояние, называется пептизацией или дезагрегацией.

Правила коагуляции

1. Все сильные электролиты, добавленные к золю в достаточном количестве, вызывают его коагуляцию. Минимальная концентрация электролита, вызывающая коагуляцию золя за определенный короткий промежуток времени, называется порогом коагуляции:

где Сэл – концентрация электролита-коагулятора; Vэл – объем добавленного электролита; Vзоля(обычно 10 мл) – объем золя.

2. Коагулирующим действием обладает тот ион, заряд которого совпадает по знаку с зарядом противоионов мицеллы лиофобного золя (заряд коагулирующего иона противоположен заряду коллоидной частицы). Этот ион называют ионом-коагулянтом.

3. Коагулирующая способность иона – коагулянта тем больше, чем больше заряд иона:

Правило значности:

γ1 : γ2 : γ3 = 1/16 : 1/26 : 1/36 = 729 : 11 : 1

Коагулирующая способность иона при одинаковом заряде тем больше, чем больше его кристаллический радиус. Ag+ > Cs+ > Rb+ > NH4+ > K+ > Na+ > Li+ – лиотропный ряд.

Коллоидной защитой называется повышение агрегативной устойчивости золя путем введения в него ВМС (высокомолекулярное соединение) или ПАВ (поверхностно-активного вещества).

Защитным числом называется минимальное количество миллиграммов сухого вещества, которое необходимо для защиты 10 мл золя при добавлении к нему электролита в количестве, равном порогу коагуляции.




Просмотров: 2098 | Автор: Vlad | Коментариев: 0 | Категория: Пособие для вузов

Внимание !

У вас нет прав для чтения и добавления комментариев. Пожалуйста авторизуйтесь или зарегистрируйтесь.

Добавление комментария

Есть что сказать? Пишите, нам всегда интересно знать Ваше мнение! Все вопросы по поводу данной новости оставляйте здесь, администрация и другие пользователи портала постараются Вам помочь. Пожалуйста, пишите комментарии без орфографических и пунктуационных ошибок.

Часы

Участник конкурса

Рекомендация сайта

Рекомендуем

Мы в Контакте

Топ пользователей



Vlad
Репутация: 11
Постов: 0
Релизов: 179


D@nIl@
Репутация: 10
Постов: 0
Релизов: 543


cilenti2
Репутация: 0
Постов: 0
Релизов: 0


Наталья
Репутация: 0
Постов: 0
Релизов: 0


rochsha170870
Репутация: 0
Постов: 0
Релизов: 0

Статистика

Зарег. на сайте:

Всего: 89
Новых за месяц: 0
Новых за неделю: 0
Новых вчера: 0
Новых сегодня: 0

Из них:

Администраторов: 4
Модератор форума:
Проверенных: 7
Обычных юзеров: 78

Из них:

Парней: 49
Девушек: 40

Онлайн

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Посещаемость

Яндекс.Метрика