Сердце химии

Добро пожаловать на наш портал

На нашем сайте ежедневно публикуются десятки качественных и свежих материалов, которые Вы можете скачать абсолютно бесплатно. Рекомендуем Вам добавить Наш сайт в закладки, а также подписаться на RSS ленту, чтобы не пропускать интересных новостей.
Главная Друзья сайта Главная Контакты Карта сайта

Перевести страницу

Мини-чат

ОК

Опрос

Как вам новый шаблон
javascript:; javascript:;
Всего ответов: 67

Мудрые говорят

Главная » Файлы » Пособие для вузов » Пособие для вузов

V. Физическая химия 1 часть

 Просмотров: 839 Автор: Vlad
 (Рейтинг: 5.0)

V. ФИЗИЧЕСКАЯ ХИМИЯ

1. Основные понятия термодинамики

Термодинамическая система – тело или группа тел, находящихся во взаимодействии, мысленно или реально обособленные от окружающей среды.

Гомогенная система – система, внутри которой нет поверхностей, разделяющих отличающиеся по свойствам части системы (фазы).

Гетерогенная система – система, внутри которой присутствуют поверхности, разделяющие отличающиеся по свойствам части системы.

Фаза – совокупность гомогенных частей гетерогенной системы, одинаковых по физическим и химическим свойствам, отделенная от других частей системы видимыми поверхностями раздела.

Изолированная система – система, которая не обменивается с окружающей средой ни веществом, ни энергией.

Закрытая система – система, которая обменивается с окружающей средой энергией, но не обменивается веществом.

Открытая система – система, которая обменивается с окружающей средой и веществом, и энергией.

Параметры состояния – величины, характеризующие какое-либо макроскопическое свойство рассматриваемой системы.

Термодинамический процесс – всякое изменение термодинамического состояния системы (изменения хотя бы одного параметра состояния).

Обратимый процесс – процесс, допускающий возможность возвращения системы в исходное состояние без того, чтобы в окружающей среде остались какие-либо изменения.

Равновесный процесс – процесс, при котором система проходит через непрерывный ряд состояний, бесконечно близких к состоянию равновесия. Характерные особенности равновесного процесса:

1) бесконечно малая разность действующих и противодействующих сил: Fex – Fin → 0;

2) совершение системой в прямом процессе максимальной работы |W| = max;

3) бесконечно медленное течение процесса, связанное с бесконечно малой разностью действующих сил и бесконечно большим числом промежуточных состояний t → ∞.

Самопроизвольный процесс – процесс, который может протекать без затраты работы извне, причем в результате может быть получена работа в количестве, пропорциональном произошедшему изменению состояния системы. Самопроизвольный процесс может протекать обратимо или необратимо.

Несамопроизвольный процесс – процесс, для протекания которого требуется затрата работы извне в количестве, пропорциональном производимому изменению состояния системы.

Энергия – мера способности системы совершать работу; общая качественная мера движения и взаимодействия материи. Энергия является неотъемлемым свойством материи. Различают потенциальную энергию, обусловленную положением тела в поле некоторых сил, и кинетическую энергию, обусловленную изменением положения тела в пространстве.

Внутренняя энергия системы U – сумма кинетической и потенциальной энергии всех частиц, составляющих систему. Можно также определить внутреннюю энергию системы как ее полную энергию за вычетом кинетической и потенциальной энергии системы как целого. [U] = Дж.

Теплота Q – форма передачи энергии путем неупорядоченного движения молекул, путем хаотических столкновений молекул двух соприкасающихся тел, т. е. путем теплопроводности (и одновременно путем излучения). Q > 0, если система получает теплоту из окружающей среды. [Q] = Дж.

Работа W – форма передачи энергии путем упорядоченного движения частиц (макроскопических масс) под действием каких-либо сил. W > 0, если окружающая среда совершает работу над системой. [W] = Дж.

Вся работа делится на механическую работу расширения (или сжатия) и прочие виды работы (полезная работа): δW = —pdV + δW′.

Стандартное состояние твердых и жидких веществ – устойчивое состояние чистого вещества при данной температуре под давлением р = 1атм.

Стандартное состоянии чистого газа – состояние газа, подчиняющееся уравнению состояния идеального газа при давлении 1 атм.

Стандартные величины – величины, определенные для веществ, находящихся в стандартном состоянии (обозначаются надстрочным индексом 0).

1.1. Первое начало термодинамики

Энергия неуничтожаема и несотворяема; она может только переходить из одной формы в другую в эквивалентных соотношениях.

Первое начало термодинамики представляет собой постулат – оно не может быть доказано логическим путем или выведено из каких-либо более общих положений.

Первое начало термодинамики устанавливает соотношение между теплотой Q, работой W и изменением внутренней энергии системы ΔU.

Изолированная система

Внутренняя энергия изолированной системы остается постоянной.

U = const или dU = 0

Закрытая система

Изменение внутренней энергии закрытой системы совершается за счет теплоты, сообщенной системе, и/или работы, совершенной над системой.

ΔU =Q +W или dU = δQ + δW

Открытая система

Изменение внутренней энергии открытой системы совершается за счет теплоты, сообщенной системе, и/или работы, совершенной над системой, а также за счет изменения массы системы.

ΔU =Q +W + ΔUm или dU = δQ + δW + iΣUidni

Внутренняя энергия является функцией состояния; это означает, что изменение внутренней энергии ΔU не зависит от пути перехода системы из состояния 1 в состояние 2 и равно разности величин внутренней энергии U2 и U1 в этих состояниях:

ΔU =U2 – U1

Для некоторого процесса:

ΔU = Σ(viUi)npoд – Σ(viUi)исх

1.2. Применение первого начала термодинамики к гомогенным однокомпонентным закрытым системам

Изохорный процесс (V = const; ΔV = 0)

В простейшем случае – полезная работа не совершается.

dU = δQ + δW = δQ – pdV
dU = δQv = CVdT = nCVdT

Все количество теплоты, полученное системой, идет на изменение внутренней энергии.

– теплоемкость при постоянном объеме, т. е. количество теплоты, необходимое для повышения температуры системы на один градус при постоянном объеме. [СV] = Дж/град.

ĈV – мольная теплоемкость при постоянном объеме, Дж/(моль × град). Для идеальных газов:

ĈV = 2/3R – одноатомный газ;

ĈV = 5/2R – двухатомный газ.

Изобарный процесс = const)
dU = δQ + δW = δQ – pdV
δQp = dU + pdV = d(U + pV) = dH

H = U + pV – энтальпия – функция состояния системы.

ΔН = Σ(νiUi)продΣ(νiUi)исх

δQp = dU + pdV =dH = CpdT – тепловой эффект изобарного процесса равен изменению энтальпии системы.

– теплоемкость при постоянном давлении. [С] = Дж/град.

Ĉр – мольная теплоемкость при постоянном давлении, Дж/(моль × град).

Для идеальных газов: Ĉр = ĈV + R; Ĉр, ĈV = [Дж/(моль • К)].

Тепловой эффект (теплота) химической реакции – количество теплоты, выделившейся либо поглотившейся в ходе реакции при постоянной температуре.

Qv = ΔUV
Qp = ΔUp
Зависимость теплового эффекта реакции от температуры. Закон Кирхгоффа

Температурный коэффициент теплового эффекта химической реакции равен изменению теплоемкости системы в ходе реакции.

Закон Кирхгоффа:

Для химического процесса изменение теплоемкости задается изменением состава системы:

ΔСр = Σ(νiCp,i)прод – Σ(νiCp,i)исх или ΔCV = Σ(νiCV,i)прод – Σ(νiCV,i)исх

Интегральная форма закона Кирхгоффа:

ΔНТ2 = ΔНТ1 + ΔСр2 – T1) или ΔUT2 = ΔUTi + ΔСV2 – T1)

1.3. Второе начало термодинамики. Энтропия

1) Теплота не может самопроизвольно переходить от менее нагретого тела к более нагретому.

2) Невозможен процесс, единственным результатом которого является превращение теплоты в работу.

3) Существует некоторая функция состояния системы, названная энтропией, изменение которой следующим образом связано с поглощаемой теплотой и температурой системы:

в неравновесном процессе

в равновесном процессе

S – энтропия, Дж/град,

– приведенная теплота.

Статистическая интерпретация энтропии

Каждому состоянию системы приписывается термодинамическая вероятность (определяемая как число микросостояний, составляющих данное макросостояние системы), тем большая, чем более неупорядоченным или неопределенным является это состояние. Энтропия – функция состояния, описывающая степень неупорядоченности системы.

S = klnW – формула Больцмана.

Система стремится самопроизвольно перейти в состояние с максимальной термодинамической вероятностью.

Расчет абсолютной энтропии

Изменение энтропии в ходе химического процесса определяется только видом и состоянием исходных веществ и продуктов реакции и не зависит от пути реакции:

ΔS = Σ(νiSi)продΣ(νiSi)исх

Величины абсолютной энтропии в стандартных условиях приведены в справочной литературе.

1.4. Термодинамические потенциалы

Потенциал – величина, убыль которой определяет производимую системой работу.

Самопроизвольно могут протекать только те процессы, которые приводят к понижению свободной энергии системы; система приходит в состояние равновесия, когда свободная энергия достигает минимального значения.

F = U – TS – свободная энергия Гельмгольца – изохорно-изотермический потенциал (Дж) – определяет направление и предел самопроизвольного протекания процесса в закрытой системе, находящейся в изохорно-изотермических условиях.

dF = dU – TdS или ΔF = ΔU – TΔS

G = H – TS = U + pV – TS – свободная энергия Гиббса – изобарно-изотермический потенциал (Дж) – определяет направление и предел самопроизвольного протекания процесса в закрытой системе, находящейся в изобарно-изотермических условиях.

dG = dH – TdS или ΔG = ΔН – TΔS
ΔG = Σ(νiGi)продΣ(νiGi)исх
ΔG0 = Σ(νiΔGобр0)продΣ(νiΔGобр0)исх
Условия самопроизвольного протекания процессов в закрытых системах

Изобарно-изотермические (Р = const, Т = const):

ΔG < 0, dG < 0

Изохорно-изотермические (V = const, Т = const):

ΔF < 0, dF < 0

Термодинамическим равновесием называется такое термодинамическое состояние системы с минимальной свободной энергией, которое при постоянстве внешних условий не изменяется во времени, причем эта неизменяемость не обусловлена каким-либо внешним процессом.

Условия термодинамического равновесия в закрытой системе

Изобарно-изотермические (Р = const, Т = const):

ΔG = 0, dG = 0, d 2G > 0

Изохорно-изотермические (V = const, Т = const):

ΔF = 0, dF = 0, d 2F > 0
Уравнения изотермы химической реакции:

Для реакции v1A1 + v2A2 + … = v′1B1 + v′2B2 + …

Здесь Ci,pi – концентрации, давления реагирующих веществ в любой момент времени, отличный от состояния равновесия.

Влияние внешних условий на химическое равновесие

Принцип смещения равновесия Ле Шателье-Брауна

Если на систему, находящуюся в состоянии истинного равновесия, оказывается внешнее воздействие, то в системе возникает самопроизвольный процесс, компенсирующий данное воздействие.

Влияние температуры на положение равновесия

Экзотермические реакции: ΔН° < 0 (ΔU° < 0). Повышение температуры уменьшает величину константы равновесия, т. е. смещает равновесие влево.

Эндотермические реакции: ΔН° > 0 (ΔU° > 0). Повышение температуры увеличивает величину константы равновесия (смещает равновесие вправо).

2. Фазовые равновесия

Компонент – химически однородная составная часть системы, которая может быть выделена из системы и существовать вне ее. Число независимых компонентов системы равно числу компонентов минус число возможных химических реакций между ними.

Число степеней свободы – число параметров состояния системы, которые могут быть одновременно произвольно изменены в некоторых пределах без изменения числа и природы фаз в системе.

Правило фаз Дж. Гиббса:

Число степеней свободы равновесной термодинамической системы С равно числу независимых компонентов системы К минус число фаз Ф плюс число внешних факторов, влияющих на равновесие: С = К – Ф + n.

Для системы, на которую из внешних факторов влияют только температура и давление, можно записать: С = К – Ф + 2.

Принцип непрерывности – при непрерывном изменении параметров состояния все свойства отдельных фаз изменяются также непрерывно; свойства системы в целом изменяются непрерывно до тех пор, пока не изменится число или природа фаз в системе, что приводит к скачкообразному изменению свойств системы.

Согласно принципу соответствия, на диаграмме состояния системы каждой фазе соответствует часть плоскости – поле фазы. Линии пересечения плоскостей отвечают равновесию между двумя фазами. Всякая точка на диаграмме состояния (т. н. фигуративная точка) отвечает некоторому состоянию системы с определенными значениями параметров состояния.

2.1. Диаграмма состояния воды

К = 1. В системе возможны три фазовых равновесия: между жидкостью и газом (линия ОА), твердым телом и газом (линия ОВ), твердым телом и жидкостью (линия OC). Три кривые имеют точку пересечения О, называемую тройной точкой воды, – отвечают равновесию между тремя фазами и С = 0; три фазы могут находиться в равновесии лишь при строго определенных значениях температуры и давления (для воды тройная точка отвечает состоянию с Р = 6,1 кПа и Т = 273,16 К).

Внутри каждой из областей диаграммы (АОВ, ВOC, АOC) система однофазна; С = 2 (система бивариантна).

На каждой из линий число фаз в системе равно двум, и, согласно правилу фаз, система моновариантна: С = 1 – 2 + 2 = 1, т. е. для каждого значения температуры имеется только одно значение давления.

Влияние давления на температуру фазового перехода описывает уравнение Кла-узиуса – Клапейрона:

V 2, V1 – изменение молярного объема вещества при фазовом переходе.

Кривая равновесия «твердое вещество – жидкость» на диаграмме состояния воды наклонена влево, а на диаграммах состояния остальных веществ – вправо, т. к. плотность воды больше, чем плотность льда, т. е. плавление сопровождается уменьшением объема (AV < 0). В этом случае увеличение давления будет понижать температуру фазового перехода «твердое тело – жидкость» (вода – аномальное вещество). Для всех остальных веществ (т. н. нормальные вещества) ΔVпл > 0 и, согласно уравнению Клаузиуса-Клапейрона, увеличение давления приводит к повышению температуры плавления.

3. Свойства растворов

3.1. Термодинамика растворов

Раствор – гомогенная система, состоящая из двух или более компонентов, состав которой может непрерывно изменяться в некоторых пределах без скачкообразного изменения ее свойств.

Диффузия в растворах

Диффузия – самопроизвольный процесс выравнивания концентрации вещества в растворе за счет теплового движения его молекул или атомов.

Закон Фика: количество вещества, диффундирующее за единицу времени через единицу площади поверхности пропорционально градиенту его концентрации:

где j – диффузионный поток; D – коэффициент диффузии.

Уравнение Эйнштейна-Смолуховского:

где η – вязкость среды; R – радиус диффундирующих частиц.

Растворимость газов в газах

Закон Дальтона: общее давление газовой смеси равно сумме парциальных давлений всех входящих в нее газов:

Робщ = Σpi и pi = xiРобщ

Закон Генри-Дальтона: растворимость газа в жидкости прямо пропорциональна его давлению над жидкостью: Ci = kpi, где Ci – концентрация раствора газа в жидкости; k – коэффициент пропорциональности, зависящий от природы газа.

Как правило, при растворении газа в жидкости выделяется теплота (к < 0), поэтому с повышением температуры растворимость уменьшается.

Формула Сеченова:

X =Х0е-kСэл

где X и Х0 – растворимость газа в чистом растворителе и растворе электролита с концентрацией С.

3.2. Коллигативные свойства растворов неэлектролитов

Коллигативными (коллективными) называются свойства растворов относительно свойств растворителя, зависящие главным образом от числа растворенных частиц.

Давление насыщенного пара разбавленных растворов

Пар, находящийся в равновесии с жидкостью, называется насыщенным. Давление такого пара р0 называется давлением или упругостью насыщенного пара чистого растворителя.

Первый закон Рауля. Парциальное давление насыщенного пара компонента раствора прямо пропорционально его мольной доле в растворе, причем коэффициент пропорциональности равен давлению насыщенного пара над чистым компонентом:

pi = pi0 xi

Для бинарного раствора, состоящего из компонентов А и В: относительное понижение давления пара растворителя над раствором равно мольной доле растворенного вещества и не зависит от природы растворенного вещества:

Растворы, для которых выполняется закон Рауля, называют идеальными растворами.

Давление пара идеальных и реальных растворов

Если компоненты бинарного (состоящего из двух компонентов) раствора летучи, то пар над раствором будет содержать оба компонента. Общее Состав, мол. доли в (хв) давление пара:

p = pA0xA + pB0xB = pA0(1 – xB) + pB0xB = pA0 – xB(pA0 – pB0)

Если молекулы данного компонента взаимодействуют друг с другом сильнее, чем с молекулами другого компонента, то истинные парциальные давления паров над смесью будут больше, чем вычисленные по первому закону Рауля (положительные отклонения, ΔН тв > 0). Если же однородные частицы взаимодействуют друг с другом слабее, чем разнородные, парциальные давления паров компонентов будут меньше вычисленных (отрицательные отклонения, ΔHраств < 0).

Температура кристаллизации разбавленных растворов

Второй закон Рауля. Понижение температуры замерзания раствора ΔТзам прямо пропорционально моляльной концентрации раствора: ΔTзам = Т0 – Т = КСm, где Т0температура замерзания чистого растворителя; Т – температура замерзания раствора; К – криоскопическая постоянная растворителя, град/кг моль,

Т02 – температура замерзания растворителя; М – молекулярная масса растворителя, ΔНпл – мольная теплота плавления растворителя.

Температура кипения разбавленных растворов

Температура кипения – температура, при которой давление насыщенного пара становится равным внешнему давлению.

Повышение температуры кипения растворов нелетучих веществ ΔТК = Тк – Тк0 пропорционально понижению давления насыщенного пара и прямо пропорционально моляльной концентрации раствора: ΔТкип = ЕСm, где Е – эбулиоскопическая постоянная растворителя, град/кг • моль,

Осмотическое давление разбавленных растворов

Осмос – преимущественно одностороннее прохождение молекул растворителя через полупроницаемую мембрану в раствор или молекул растворителя из раствора с меньшей концентрацией в раствор с большей концентрацией.

Давление, которое необходимо приложить к раствору, чтобы предотвратить перемещение растворителя в раствор через мембрану, разделяющую раствор и чистый растворитель, численно равно осмотическому давлению π (Па).

Принцип Вант-Гоффа: осмотическое давление идеального раствора равно тому давлению, которое оказывало бы растворенное вещество, если бы оно, находясь в газообразном состоянии при той же температуре, занимало бы тот же объем, который занимает раствор: π = CRT.

Изотонические растворы – два раствора с одинаковым осмотическим давлением (π1 = π2).

Гипертонический раствор – раствор, осмотическое давление которого больше, чем у другого (π1 > π2).

Гипотонический раствор – раствор, осмотическое давление которого меньше, чем у другого (π1 < π2).

3.3. Растворы электролитов

Степень диссоциации α – отношение числа молекул n, распавшихся на ионы, к общему числу молекул N:

Изотонический коэффициент i Ван-Гоффа – отношение фактического числа частиц в растворе электролита к числу частиц этого раствора без учета диссоциации.

Если из N молекул продиссоциировало n, причем каждая молекула распалась на ν ионов, то

Для неэлектролитов i = 1.

Для электролитов 1 < ≤ ν.

3.4. Коллигативные свойства растворов электролитов:

Теория электролитической диссоциации Аррениуса

1. Электролиты в растворах распадаются на ионы – диссоциируют.

2. Диссоциация является обратимым равновесным процессом.

3. Силы взаимодействия ионов с молекулами растворителя и друг с другом малы (т. е. растворы являются идеальными).

Диссоциация электролитов в растворе происходит под действием полярных молекул растворителя; наличие ионов в растворе предопределяет его электропроводность.

По величине степени диссоциации электролиты подразделяются на три группы: сильные (α ≥ 0,7), средней силы (0,3 < α < 0,7) и слабые (α ≤ 0,3).

Слабые электролиты. Константа диссоциации

Для некоторого электролита, распадающегося в растворе на ионы в соответствии с уравнением:

АаВb ↔ аАx- + bВy+

Для бинарного электролита:

Для разбавленных растворов можно считать, что (1 – α) = 1 и К ≈ α2С.

– закон разбавления Оствальда: степень диссоциации слабого электролита возрастает с разбавлением раствора.

Активность растворенного вещества – эмпирическая величина, заменяющая концентрацию, – активность (эффективная концентрация) а, связанная с концентрацией через коэффициент активности f, который является мерой отклонения свойств реального раствора от идеального:

а = fC; а+ = f+С+; а_ = f_C_.

Для бинарного электролита:

– средняя активность электролита;

– средний коэффициент активности.

Предельный закон Дебая-Хюккеля для бинарного электролита: lg f = -0,51z 2I ½, где z – заряд иона, для которого рассчитывается коэффициент активности;

I – ионная сила раствора I = 0,5Σ(Сiri2).

4. Электропроводность растворов электролитов

Проводники I рода – металлы и их расплавы, в которых электричество переносится электронами.

Проводники II рода – растворы и расплавы электролитов с ионным типом проводимости.

Электрический ток есть упорядоченное перемещение заряженных частиц.

Всякий проводник, по которому течет ток, представляет для него определенное сопротивление R, которое, согласно закону Ома, прямо пропорционально длине проводника l и обратно пропорционально площади сечения S; коэффициентом пропорциональности является удельное сопротивление материала ρ – сопротивление проводника, имеющего длину 1 см и сечение 1 см2:

Величина W, обратная сопротивлению, называется электропроводностью – количественной меры способности раствора электролита проводить электрический ток.

Удельная электропроводность χ(к) – электропроводность проводника I рода длиной 1 м с площадью поперечного сечения 1 м2 или электропроводность 1 м3 (1 см3) раствора электролита (проводника II рода) при расстоянии между электродами 1 м (1 см) и площади электродов 1 м2 (1 см2).

Молярная электропроводность раствора) λ – электропроводность раствора, содержащего 1 моль растворенного вещества и помещенного между электродами, расположенными на расстоянии 1 см друг от друга.

Молярная электропроводность как сильных, так и слабых электролитов увеличивается с уменьшением концентрации (т. е. с увеличением разведения раствора V = 1/C), достигая некоторого предельного значения λ0), называемого молярной электропроводностью при бесконечном разведении.

Для бинарного электролита с однозарядными ионами при постоянной температуре и напряженности поля 1 В • м-1:

λ = αF(u + + и¯),

где F – число Фарадея; и+, и¯ – абсолютные подвижности (м2В-1с-1) катиона и аниона – скорости движения данных ионов в стандартных условиях, при разности потенциалов в 1В на 1 м длины раствора.

λ+ = Fu+; λ¯ = Fu¯,

где λ+, λ¯ – подвижности катиона и аниона, Ом • м2 • моль-1 (Ом • см2 • моль-1).

λ = α(λ+ + λ¯)

Для сильных электролитов α ≈1 и λ = λ+ + λ¯

При бесконечном разбавлении раствора (V → ∞, λ+ → λ+, λ¯ → λ¯, α → 1) как для сильного, так и для слабого электролитов λ= λ+ – λ¯ – закон Кольрауша: молярная электропроводность при бесконечном разведении равна сумме электролитических подвижностей λ+, λ¯ катиона и аниона данного электролита.

Ионы Н+ и OH¯ обладают аномально высокой подвижностью, что связано с особым механизмом переноса заряда этими ионами – эстафетным механизмом. Между ионами гидроксония Н3O+ и молекулами воды, а также между молекулами воды и ионами OH¯ непрерывно происходит обмен протонами по уравнениям:

Н3O+ + Н2O → Н2O + Н3O+

Н2O + OH¯ → OH¯ + Н2O




Просмотров: 839 | Автор: Vlad | Коментариев: 0 | Категория: Пособие для вузов

Внимание !

У вас нет прав для чтения и добавления комментариев. Пожалуйста авторизуйтесь или зарегистрируйтесь.

Добавление комментария

Есть что сказать? Пишите, нам всегда интересно знать Ваше мнение! Все вопросы по поводу данной новости оставляйте здесь, администрация и другие пользователи портала постараются Вам помочь. Пожалуйста, пишите комментарии без орфографических и пунктуационных ошибок.

Часы

Участник конкурса

Рекомендация сайта

Рекомендуем

Мы в Контакте

Топ пользователей



Vlad
Репутация: 11
Постов: 0
Релизов: 179


D@nIl@
Репутация: 10
Постов: 0
Релизов: 543


cilenti2
Репутация: 0
Постов: 0
Релизов: 0


Наталья
Репутация: 0
Постов: 0
Релизов: 0


rochsha170870
Репутация: 0
Постов: 0
Релизов: 0

Статистика

Зарег. на сайте:

Всего: 89
Новых за месяц: 0
Новых за неделю: 0
Новых вчера: 0
Новых сегодня: 0

Из них:

Администраторов: 4
Модератор форума:
Проверенных: 7
Обычных юзеров: 78

Из них:

Парней: 49
Девушек: 40

Онлайн

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Посещаемость

Яндекс.Метрика