Сердце химии

Добро пожаловать на наш портал

На нашем сайте ежедневно публикуются десятки качественных и свежих материалов, которые Вы можете скачать абсолютно бесплатно. Рекомендуем Вам добавить Наш сайт в закладки, а также подписаться на RSS ленту, чтобы не пропускать интересных новостей.
Главная Друзья сайта Главная Контакты Карта сайта

Перевести страницу

Мини-чат

ОК

Опрос

Как вам новый шаблон
javascript:; javascript:;
Всего ответов: 67

Мудрые говорят

Главная » Файлы » Пособие для вузов » Пособие для вузов

III. Аналитическая химия

 Просмотров: 1698 Автор: Vlad
 (Рейтинг: 3.7)

III. Аналитическая химия

1. Теоретические основы аналитической химии

Чувствительность аналитической реакции. Предел обнаружения, или открываемый минимум, (m) – наименьшая масса вещества, открываемая данной реакцией по данной методике. Измеряется в микрограммах (1 мкг = 10– 6 г).

Предельная концентрация (clim) – наименьшая концентрация определяемого вещества, при которой оно может быть обнаружено в растворе данной реакцией по данной методике. Выражается в г/мл.

Предельное разбавление (Vlim) – объем раствора с предельной концентрацией, в котором содержится 1 г определяемого вещества. Предельное разбавление выражается в мл/г.

Минимальный объем предельно разбавленного раствора (Vmin) – наименьший объем (мл) раствора определяемого вещества, необходимый для его обнаружения данной реакцией.

m = Clim • Vmin • 106,

Вычисление рН водных растворов

сильных кислот: рН = – lga(H+) = – lg (c(H+) / f+))

сильных оснований: рН = 14 + lga(OH¯) = 14 + lg (c(OH¯) f(OH¯))

слабых кислот: рН = – ½(рKкислоты – lgc) = – ½Kкислоты – ½lgc

слабых оснований: рН = 14 – ½рKоснования + ½lgc

солей, образованных сильным основанием и слабой кислотой: рН = 7 + ½pKкислоты + ½lgcсоли

солей, образованных слабым основанием и сильной кислотой: рН = 7 – ½Kоснования – lgcсоли

солей, образованных слабым основанием и слабой кислотой: рН = 7 + ½pKкислоты + ½pKоснования

кислого буферного раствора:

щелочного буферного раствора:

Вычисление буферной емкости. Емкость буферного раствора определяется количеством сильной кислоты или сильного основания, которое необходимо добавить к 1 л буферного раствора, чтобы изменить его значение рН на единицу.

Гетерогенное равновесие: осадок – насыщенный раствор малорастворимого соединения. Гетерогенное равновесие между осадком малорастворимого соединения и его ионами в насыщенном водном растворе может быть представлено следующим уравнением:


KtmAnn↓ ↔ mKtn+ + nAnm-

[Ktn+] = m s; [Anm-] = n • s

Константа равновесия обратимой реакции осаждения-растворения называется произведением растворимости Ks (или ПР) и выражается следующим образом:

Ks = a(Ktn+) a(Anm-)n = (f(Ktn+) x [Ktn+])m  (f(Anm-)[Anm-])n = (ms)m(ns)n • f(Ktn+)m • f(Ann-)n = nnmmsm+n • f(Ktn+)m • f(Anm-)n, или Ks = nn • mm • sm + n

Растворимость – это свойство вещества образовывать гомогенные системы с растворителем. Молярная растворимость малорастворимого вещества (s), моль/л, выражается следующим образом:

Зная молярную растворимость соединения KtmAnn, легко вычислить его растворимость в г/л ρ по формуле:

ρ = s • M(KtmAnn)

Массу малорастворимого вещества в любом объеме можно рассчитать по формуле:

m(KtmAnn) = s(KtmAnn) • M(KtmAnn) x Vр-ра

Условие образования и растворения осадка. Осадок не образуется или растворяется, если произведение концентраций ионов осадка в растворе меньше величины произведения растворимости.

[Ktn+]m[Anm-]n < Ks(KtmAnn)

Осадок образуется или выпадает, если произведение концентраций ионов осадка в растворе больше величины произведения растворимости.

[Ktn+]m[Anm-]n > Ks(KtmAnn).

Равновесия в окислительно-восстановительных системах. Для обратимой окислительно-восстановительной реакции

Oх + nē ↔ Red

Равновесный потенциал Eox/red со стандартным потенциалом редокс-пары Eox/red и активностью окисленной и восстановленной формы связан уравнением Нернста:

где R – универсальная газовая постоянная, равная 8,314 Дж/моль К, Т – температура по шкале Кельвина, К, T – число Фарадея, равное 96485 Кл/моль, а(Ох) – активность окисленной формы, a(Red) – активность восстановленной формы.

При подстановке в уравнение значений универсальной газовой постоянной, числа Фарадея, температуры Т = 298 К и замены натурального логарифма на десятичный получается уравнение для расчета значения равновесного электродного потенциала редокс-пары при 25°C:

Если в окислительно-восстановительных реакциях принимают участие ионы водорода, то уравнение Нернста выглядит следующим образом:

Если окисленная или восстановленная форма окислительно-восстановительной полуреакции является малорастворимым соединением, то в формулу для вычисления равновесного потенциала такой системы входит величина произведения растворимости этого соединения.

Если в окислительно-восстановительной полуреакции окисленной формой является комплексное соединение OxLm, характеризующееся константой устойчивости β(OxLm), то равновесный окислительно-восстановительный потенциал вычисляется по уравнению:

Направление и глубина протекания окислительно-восстановительных реакций. Обратимая окислительно-восстановительная реакция

аОх1 + bRed1 ↔ аОх2 + bRed2 протекает в прямом направлении, если ΔЕ0 = Е0Ox1/Red2 – Е0Ox2/Red1 > 0, И В обратном направлении, если ΔЕ0 < 0.

Глубина протекания реакции, т. е. степень превращения исходных веществ в продукты реакции, определяется константой равновесия.

Для окислительно-восстановительной реакции константа равновесия с потенциала-

ми участвующих в реакции редокс-пар связана уравнением:

2. Качественные реакции катионов

Кислотно-основная классификация катионов

I группа: Li+, NH4+, Na+, K+

групповой реагент – отсутствует.

Свойства соединений: хлориды, сульфаты и гидроксиды растворимы в воде.

II группа: Ag+, Hg22+, Pb2+

групповой реагент – HCl (с(HCl) = 2 моль/л).

Свойства соединений: хлориды не растворимы в воде.

III группа: Са2+, Ва2+, Sr2+, Pb2+

групповой реагент – H2SO4 (c(H2SO4) = 2 моль/л).

Свойства соединений: сульфаты не растворимы в воде.

IV группа: Al3+, Cr3+, Zn2+, As(III), As(IV), Sn2+

групповой реагент – NaOH (c(NaOH) = 2 моль/л), избыток.

Свойства соединений: гидроксиды растворимы в избытке NaOH.

V группа: Bi3+, Fe2+, Fe3+, Mn2+

групповой реагент – NH3 (конц.).

Свойства соединений: гидроксиды нерастворимы в избытке NaOH и NH3.

VI группа: Cd2+, Co2+, Cu2+, Ni2+

групповой реагент – NH4OH (конц.).

Свойства соединений: гидроксиды нерастворимы в избытке NaOH, но растворимы в избытке NH3.

2.1. I аналитическая группа

Ион: Li+

1. Реактив, условия: Na2HPO4, конц. NH3.

Уравнение реакции:

3LiCl + Na2HPO4 = Li3PO4↓ + 2NaCl +HCl

Наблюдения: белый осадок.

2. Реактив, условия: Na2CO3, рН ≈ 7

Уравнение реакции: 2LiCl + Na2CO3 = Li2CO3↓ + 2NaCl

Наблюдения: белый осадок.

Ион: NH4+

1. Реактив, условия: NaOH, газовая камера.

Уравнение реакции:

NH4Cl + NaOH = NaCl + Н2O + NH3

Наблюдения: запах аммиака, фенолфталеиновая бумага краснеет.

2. Реактив, условия: реактив Несслера (смесь K2[HgI4] и KOH)

Уравнение реакции:

NH3 + 2K2[HgI4] + ЗKOH = [OHg2NH2]I↓ + 7KI + 2Н2O

Наблюдения: красно-бурый осадок.

Ион: Na+

1. Реактив, условия: K[Sb(OH)6], насыщенный раствор, холод, рН ≈ 7, мешают NH4+, Li+

Уравнение реакции:

NaCl + K[Sb(OH)6] = Na[Sb(OH)6]↓ + KCl

Наблюдения: белый осадок.

2. Реактив, условия: Zn(UO2)3(CH3COO)8, предметное стекло, CH3COOH, мешает Li+

Уравнение реакции:

NaCl + Zn(UO2)3(CH3COO)8 + CH3COOK + 9Н2O = NaZn(UO2)3(CH3COO)9 9Н2O↓ + KCl

Наблюдения: желтые кристаллы октаэд-рической и тетраэдрической форм.

Ион: К+

1. Реактив, условия: Na3[Co(NO2)6], слабо-кислая среда, мешают NH4+, Li+.

Уравнение реакции:

2KCl + Na3[Co(NO2)6] = K2Na[Co(NO2)6]↓ + 2NaCl

Наблюдения: желтый осадок.

2. Реактив, условия: NaHC4H4O6, рН ≈ 7, мешает NH4+.

Уравнение реакции: 2KCl + NaHC4H4O6 = K2C4H4O6↓ + NaCl + HCl

Наблюдения: белый осадок.

2.2. II аналитическая группа

Ион: Ag+

1. Реактив, условия: HCl, NH• Н2O

Уравнения реакций:

AgNO3 + HCl = AgCl↓ + HNO3

AgCl↓ + 2NH3 • H2O = [Ag(NH3)2]Cl + 2H2O

[Ag(NH3)2]Cl + 2HNO3 = AgCl↓ + 2NH4NO3

Наблюдения: белый осадок, растворимый в избытке аммиака и выпадающий вновь при добавлении азотной кислоты (использовать спец. слив!).

2. Реактив, условия: К2СrO4, рН = 6,5–7,5.

Уравнение реакции:

2AgNO3 + K2CrO4 = Ag2CrO4↓ + 2KNO3 Наблюдения: кирпично-красный осадок.

Ион: Hg2+

1. Реактив, условия: HCl, NH3 • Н2O

Уравнения реакций:

Hg2(NO3)2 + 2HCl = Hg2Cl2↓ + 2HNO3

Hg2Cl2↓ + 2NH3 • H2O = [HgNH2]Cl↓ + Hgi↓ + NH4Cl + 2H2O

Наблюдения: белый осадок, при добавлении аммиака – чернеет (использовать спец. слив!).

2. Реактив, условия: Cu (металл.)

Уравнение реакции:

Hg2(NO3)2 + Cu = Hg↓ + Cu(NO3)2

Наблюдения: образование амальгамы.

Ион: РЬ2+

1. Реактив, условия: HCl

Уравнение реакции:

Pb(NO3)2 + 2HCl = РЬCl2↓ + 2HNO3

Наблюдения: белый осадок, растворимый в горячей воде.

2. Реактив, условия: KI

Уравнение реакции:

РЬCl2 + 2KI = РCl2↓ + 2KCl

Наблюдения: ярко-желтый осадок.

2.3. III аналитическая группа

Ион: Ва2+

1. Реактив, условия: H2SO4

Уравнение реакции:

ВaCl2 + H2SO4 = BaSO4↓ + 2HCl

Наблюдения: белый осадок, нерастворимый в HNO3.

2. Реактив, условия: К2СrO4 или К2Сr2O7

Уравнение реакции:

ВaCl2 + К2СrO4 = ВаСrO4↓ + 2KCl

Наблюдения: желтый осадок, нерастворимый в CH3COOH, растворимый в HNO3.

Ион: Са2+

1. Реактив, условия: H2SO4 и С2Н5OH

Уравнение реакции:

CaCl2 + H2SO4 + 2Н2O = CaSO4 • 2H2O↓ + 2HCl

Наблюдения: белые кристаллы гипса.

2. Реактив, условия: (NH4)2C2O4

Уравнение реакции:

CaCl2 + (NH4)2C2O4 = СаС2O4↓ + 2NH4Cl

Наблюдения: белый осадок, нерастворимый в CH3COOH, растворимый в HNO3.

Ион: Sr2+

1. Реактив, условия: «гипсовая вода»

Уравнение реакции:

SrCl2 + CaSO4t→ SrSO4↓ + CaCl2

Наблюдения: белый осадок.

2.4. IV аналитическая группа

Ион: Al3+

1. Реактив, условия: ализарин С14Н6O2(OH)2, NH3 • Н2O (NH4Cl)

Уравнения реакций:

AlCl3 + 3NH3 • H2O = Al(OH)3↓ + 3NH4Cl

Наблюдения: Розовый лак на фильтровальной бумаге.

2. Реактив, условия: алюминон, CH3COOH

Уравнение реакции: алюминон с Al(OH)3 образует красный лак, которому приписывается следующая формула:

Наблюдения: розовый лак.

Ион: Сr3+

Реактив, условия: NaOH, H2O2, нагревание, амиловый спирт, H2SO4

Уравнение реакции:

2СrCl3 + 10NaOH + ЗН2O2 = 2К2СrO4 + 6NaCl + 8Н2O

Наблюдения: желтый раствор, при добавлении амилового спирта, H2SO4 наблюдается синее кольцо.

Ион: Zn2+

Реактив, условия: дитизон С6Н5—NH—N=C(SH)—N=N—C6H5 (дифенилкарбазон), CHCl3, рН = 2,5-10, мешают Pb2+, Cd2+, Sn2+

Уравнения реакций:

Наблюдения: соль красного цвета, растворимая в хлороформе (CHCl3).

Ион: AsO33-

Реактив, условия: AgNO3

Уравнение реакции:

Na3AsO3 + 3AgNO3 = Ag3AsO3↓ + 3NaNO3

Наблюдения: желтый аморфный осадок, растворим в концентрированном растворе аммиака и в азотной кислоте (использовать спец. слив!).

Ион: AsO43-

1. Реактив, условия: магнезиальная смесь (MgCl2 + NH4Cl + NH3), мешает PO43-

Уравнение реакции:

NH4Cl + MgCl2 + Na3AsO4 = NH4MgAsO4↓ + 3NaCl

Наблюдения: белый кристаллический осадок (использовать спец. слив!).

2. Реактив, условия: AgNO3

Уравнение реакции:

Na3AsO4 + 3AgNO3 = Ag3AsO4↓ + 3NaNO3

Наблюдения: осадок шоколадного цвета (использовать спец. слив!).

3. Реактив, условия: (NH4)2S или H2S, конц. HCl

Уравнение реакции:

5H2S + 2Na3AsO4 + 6HCl = As2S5↓ + 8Н2O + 6NaCl

Наблюдения: осадок желтого цвета (использовать спец. слив!).

Ион: Sn2+

1. Реактив, условия: Bi(NO3)3, pH > 7

Уравнения реакций:

SnCl2 + NaOH = Sn(OH)2↓ + 2NaCl

Sn(OH)2 + 2NaOH(изб.) = Na2[Sn(OH)4] + 2NaCl

3Na2[Sn(OH)4] + 2Bi(NO3)3 + 6NaOH = 2Bi + 3Na2[Sn(OH)6] + 6NaNO3

Наблюдения: осадок черного цвета.

2. Реактив, условия: HgCl2, конц. HCl

Уравнения реакций:

SnCl2 + 2HCl = H2[SnCl4]

H2[SnCl4] + 2HgCl2 = H2[SnCl6] + Hg2Cl2

Наблюдения: осадок белого цвета, который постепенно чернеет вследствие образования металлической ртути.

2.5. V аналитическая группа

Ион: Bi3+

1. Реактив, условия: Na2[Sn(OH)4], pH >7

Уравнение реакции:

2Bi(NO3)3 + 3Na2[Sn(OH)4] + 6NaOH = 2Bi↓ + 3Na2[Sn(OH)6] + 6NaNO3

Наблюдения: осадок черного цвета.

2. Реактив, условия: KI, рН < 7

Уравнение реакции:

Bi(NO3)3 + 3KI = Bil3↓ + 3KNO3

Наблюдения: осадок черного цвета, растворяется в избытке KI с образованием оранжевого раствора K[BiI4]. При разбавлении водой опять выпадает черный осадок BiI3, который затем гидролизуется с образованием оранжевого осадка ВiOI.

Ион: Fe2+

1. Реактив, условия: K3[Fe(CN)6]

Уравнение реакции:

FeSO4 + K3[Fe(CN)6] = KFe[Fe(CN)6]↓ + K2SO4

Наблюдения: темно-синий осадок турн-булевой сини.

Ион: Fe3+

1. Реактив, условия: K4[Fe(CN)6]

Уравнение реакции:

FeCl3 + K4[Fe(CN)6] = KFe[Fe(CN)6]↓ + ЗKCl

Наблюдения: темно-синий осадок берлинской лазури.

2. Реактив, условия: NH4CNS, мешают ионы NO2¯

Уравнение реакции:

FeCl3 + 3NH4CNS = Fe(CNS)3 + 3NH4Cl

Наблюдения: кроваво-красный раствор.

Ион: Mn2+

1. Реактив, условия: NaBiO3(крист.), HNO3

Уравнение реакции:

2Mn(NO3)2 + 14HNO3 + 5NaBiO3 = 2HMnO4 + 5Bi(NO3)3 + 5NaNO3 + 7H2O

Наблюдения: малиново-фиолетовая окраска раствора.

2.6. VI аналитическая группа

Ион: Cd2+

1. Реактив, условия: NH4OH

Уравнения реакций:

Cd(NO3)2 + 2NH4OH = Cd(OH)2↓ + 2NH4NO3

Cd(OH)2↓ + 4NH4OH = [Cd(NH3)4](OH)2 + 2H2O

Наблюдения: осадок белого цвета, растворим в избытке водного раствора аммиака.

2. Реактив, условия: (NH4)2S, pH > 0,5

Уравнение реакции:

Cd(NO3)2 + (NH4)2S = CdS↓ + 2NH4NO3

Наблюдения: желто-оранжевый осадок.

Ион: Со2+

Реактив, условия: NH4CNS, изоамиловый спирт (смесь изоамилового спирта с эфиром), мешают ионы Fe3+. Для удаления мешающих ионов Fe3+ добавляют NH4F.

Уравнение реакции:

СоCl2 + 4NH4CNS = (NH4)2[Co(SCN)4] + 2NH4CNS

Наблюдения: слой органических реагентов окрашен в синий цвет.

Ион: Cu2+

Реактив, условия: NH3 Н2O, избыток

Уравнение реакции:

CuSO4 + 4NH3 H2O = [Cu(NH3)4]SO4 + 4Н2O

Наблюдения: темно-синий раствор.

Ион: Ni2+

Реактив, условия: диметилглиоксим C4H8N2O2 (реактив Чугаева), KOH, рН ≈ 9-10

Уравнение реакции:

2C4H8N2O2 + Ni2+ = Ni(C4H6N2O2)2 + 2H+

Наблюдения: розовый осадок.

3. Качественные реакции анионов

Кислотно-основная классификация анионов

I группа: SO42-, CO32-, PO43-, SiO32-

групповой реагент – Ba(NO3)2

II группа: CI¯, S2-

групповой реагент – AgNO3

III группа: NO3¯, MoO42-, WO42-, VO3¯, CH3COO¯

групповой реагент – отсутствует

3.1. I аналитическая группа

Ион: SO42-

1. Реактив, условия: Ba(NO3)2

Уравнение реакции:

SO42- + Ba(NO3)2 = BaSO4↓ + 2NO3¯

Наблюдения: белый осадок, нерастворим в HNO3.

Ион: CO32-

1. Реактив, условия: Ba(NO3)2

Уравнения реакций:

CO32- + Ba(NO3)2 = ВaCO3↓ + 2NO3¯

ВaCO3↓ + 2Н+ = Ва2+ + CO2↑ + Н2O

Наблюдения: белый осадок, легко растворимый в соляной, азотной и уксусной кислотах с выделением оксида углерода(IV) CO2.

2. Реактив, условия: минеральные кислоты (HCl, HNO3, H2SO4), известковая вода (Са(OH)2).

Уравнения реакций:

CO32- + 2H+ = CO2↑ + Н2O

Са(OH)2 + CO2 = CaCO3↓ + Н2O

Наблюдения: выделение газа, помутнение известковой воды.

Ион: PO43-

1. Реактив, условия: Ba(NO3)2

Уравнение реакции:

Na3PO4 + Ba(NO3)2 = Ba3(PO4)2↓ + 2NaNO3

Наблюдения: белый осадок, растворимый в минеральных кислотах.

2. Реактив, условия: молибденовая жидкость, раствор молибдата аммония (NH4)2MoO4 в азотной кислоте, NH4NO3

Уравнение реакции:

PO43- + 3NH4+ + 12МоO42- + 24Н+ = (NH4)3[P(Mo3O10)4]↓ + 12Н2O

Наблюдения: желтый кристаллический осадок.

Ион: SiO32-

1. Реактив, условия: разбавленные растворы кислот.

Уравнение реакции:

SiO32- + 2H+ = H2SiO3

Наблюдения: образование геля кремниевой кислоты.

2. Реактив, условия: соли аммония (NH4Cl, или (NH4)2SO4, или NH4NO3).

Уравнение реакции:

SiO32- + 2NH4+ + (2Н2O) = H2SiO3↓ + 2NH3 + (2Н2O)

Наблюдения: образование геля кремниевой кислоты.

3.2. II аналитическая группа

Ион: Cl¯

Реактив, условия: AgNO3, NH4OH, HNO3.

Уравнения реакций:

Ag+ + CI¯ = AgCl↓

AgCl↓ + 2NH4OH = [Ag(NH3)2]Cl + 2H2O

[Ag(NH3)2]Cl + 2HNO3 = AgCl↓ + 2NH4NO3

Наблюдения: белый осадок, растворим в NH4OH, образуется в HNO3.

Ион: S2-

1. Реактив, условия: разбавленные растворы кислот, фильтровальная бумага, смоченная ацетатом свинца РЬ2(CH3COО)2.

Уравнения реакций:

S2- + 2Н+ = H2S↑

H2S↑ + Pb2+ + 2CH3COО¯ = PbS↓ + 2CH3COOH

Наблюдения: резкий запах, почернение фильтровальной бумаги, смоченной ацетатом свинца.

2. Реактив, условия: соли сурьмы(III), Sb2S3

Уравнение реакции:

3S2- + 2Sb3+ = Sb2S3

Наблюдения: оранжевый осадок.

3. Реактив, условия: соли кадмия(II), Cd(NO3)2

Уравнение реакции: S2- + Cd2+ = CdS↓

Наблюдения: желтый осадок.

3.3. III аналитическая группа

Ион: NO3¯

Реактив, условия: дифениламин (C6H5)2NH в H2SO4 (конц.)

Наблюдения: темно-синее окрашивание на стенках пробирки.

Ионы: МoO42-, WO42-, VO3¯

Реактив, условия: дифениламин (C6H5)2NH в H2SO4 (конц.)

Наблюдения: темно-синее окрашивание на стенках пробирки.

Ион: VO3¯

1. Реактив, условия: Н2O2, эфир. Уравнение реакции:

VO3¯ + Н2O2 = VO4¯ + Н2O

Наблюдения: окрашивание органической фазы в оранжевый цвет.

2. Реактив, условия: лигнин (газетная бумага)

Наблюдения: лигнин, содержащийся в газетной бумаге, восстанавливает ион VOдо низших степеней окисления, которые окрашивают газетную бумагу в черно-зеленый цвет.

Ион: CH3COО¯

Реактив, условия: H2SO4 (конц.)

Уравнение реакции:

CH3COО¯ + Н+ = CH3COOH

Наблюдения: запах уксуса.

4. Количественный анализ

4.1. Титриметрический (объемный) анализ

Молярная концентрация сэ = nэ/V, где nэ – количество вещества эквивалентов, моль; V– объем раствора, л; единица измерения концентрации – моль/л.

Количество вещества эквивалента (nэ) nэ = m/Mэ = cэ V, где m – масса вещества, г; Mэ – молярная масса эквивалента, г/моль, V – объем раствора, л.

Закон эквивалентов: nэ(А) = nэ(В) или

Титр – количество граммов растворенного вещества, содержащегося в 1 мл раствора.

Титр по определяемому веществу – количество граммов определяемого вещества, которое реагирует с 1 мл титранта.

Прямое титрование – простейший прием титрования, заключающийся в том, что к определенному объему раствора определяемого вещества (А) по каплям приливают титрант (рабочий раствор) вещества (В).

Обратное титрование – процесс титрования, при котором к определенному объему раствора определяемого вещества (А) приливают точно известный объем титранта (В1), взятого в избытке. Избыток не вошедшего в реакцию вещества (В1) оттитровывают раствором другого титранта (В2) точно известной концентрации.

Заместительное титрование. Процесс титрования, при котором к определяемому веществу (А) прибавляют вспомогательное вещество (Р), реагирующее с ним с выделением эквивалентного количества нового вещества (А1), которое оттитровывают соответствующим титрантом (В). Таким образом, вместо непосредственного титрования определяемого вещества (А) титруют его заместитель (А1). Так как количества A и A1 эквивалентны, то количество вещества эквивалента определяемого вещества nэ(А) равно количеству вещества эквивалента титранта nэ(В):

4.2. Метод нейтрализации

Уравнение реакции: Н+ + OH¯ → Н2O или Н3O+ + OH¯ → 2Н2O.

Основные титранты (рабочие растворы): растворы сильных кислот (HCl или H2SO4) и сильных оснований (NaOH или KOH).

Установочные вещества (или первичные стандарты): тетраборат натрия Na2B4O7 × 10 Н2O, карбонат натрия Na2CO3, щавелевая кислота Н2С2O4 • 2Н2O, янтарная кислота Н2С4Н4O4.

Индикаторы: кислотно-основные индикаторы (см. таблицу).

Характеристики некоторых индикаторов приведены в таблице.

Некоторые примеры кислотно-основного титрования

Титрование сильной кислоты сильным основанием

HCl + NaOH → NaCl + Н2O

Н+ + OH¯ → Н2O

В точке эквивалентности образуется соль сильной кислоты и сильного основания, которая не подвергается гидролизу. Реакция среды будет нейтральной (рН = 7). В данном случае индикатором может служить лакмус.

Титрование слабой кислоты сильным основанием

CH3COOH + NaOH → CH3COONa + Н2O

CH3COOH + OH¯ – > CHgCOO¯ + Н2O

Образующаяся соль слабой кислоты и сильного основания в растворе подвергается гидролизу:

CH3COO¯ + HOH → CH3COOH + OH¯

Точка эквивалентности в этом случае будет находиться в щелочной среде, поэтому следует применять индикатор, меняющий окраску при рН < 7, например фенолфталеин.

Титрование слабого основания сильной кислотой

NH4OH + HCl → NH4Cl + Н2O

NH4OH + Н+ → NH4+ + Н2O

Образующаяся соль в растворе подвергается гидролизу:

NH4+ + HOH → NH4OH + Н+

Точка эквивалентности будет находиться в кислой среде, поэтому можно применять индикатор, меняющий свою окраску при рН < 7, например метилоранж.

4.3. Метод комплексонометрии

Комплексонометрия – титриметриче-ский метод анализа, основанный на реакциях комплексообразования определяемых ионов металлов с некоторыми органическими веществами, в частности с комплексонами.

Комплексоны – аминополикарбоновые кислоты и их производные (соли).

В титриметрическом анализе широко используется один из представителей класса комплексонов – динатриевая соль этилендиаминтетрауксусной кислоты (Ма2Н2ЭДТА). Этот комплексон часто называют также трилоном Б или комплексном III:

или [Na2H2ЭДTA]

Трилон Б со многими катионами металлов образует прочные, растворимые в воде внутрикомплексные соединения (хелаты). При образовании хелата катионы металла замещают два атома водорода в карбоксильных группах трилона Б и образуют координационные связи с участием атомов азота аминогрупп.

Уравнение реакции: Ме2+ + Н2ЭДТА2- → [МеЭДТА]2- + 2Н+

Основные титранты (рабочие растворы): трилон Б, MgSO4, CaCl2

Установочные вещества (или первичные стандарты): MgSO4, CaCl2

Индикаторы: металлохромные индикаторы, эриохром черный Т

При рН = 7-11 анион этого индикатора (HInd2-) имеет синюю окраску. С катионами металлов (Са2+, Mg2+, Zn2+ и др.) в слабощелочном растворе в присутствии аммиачного буфера (рН = 8-10) он образует комплексные соединения винно-красного цвета по схеме:

При титровании исследуемого раствора трилоном Б:

Константы нестойкости комплексов равны соответственно:

Kн([CaInd]¯) = 3,9 • 10-6

Kн([СаЭДТА]2-) = 2,7 • 10-11

Kн([MgInd]¯) = 1,0 •1 0-7

Kн([MgЭДTA]2-) = 2,0 • 10-9

4.4. Жесткость воды. Определение жесткости воды

Гидрокарбонатная (временная) жесткость обусловлена присутствием в воде бикарбонатов кальция и магния: Са(HCO3)2 и Mg(HCO3)2. Она почти полностью устраняется при кипячении воды, так как растворимые гидрокарбонаты при этом разлагаются с образованием нерастворимых карбонатов кальция и магния и гидроксо-карбонатов магния:

Са(HCO3)2 = CaCO3↓ + CO2↑ + H2O

Mg(HCO3)2 = MgCO3↓ + CO2↑ + H2O

2Mg(HCO3)2 = (MgOH)2CO3↓ + 3CO2↑ + H2O

Постоянная жесткость воды обусловлена присутствием в ней преимущественно сульфатов и хлоридов кальция и магния и при кипячении не устраняется.

Сумма величин временной и постоянной жесткости составляет общую жесткость воды:

Жобщ. = Жвр. + Жпост.

Существуют различные способы определения жесткости воды: определение временной жесткости с помощью метода нейтрализации; комплексонометрический метод определения общей жесткости.

Гидрокарбонатная жесткость воды определяется титрованием воды раствором соляной кислоты в присутствии метилового оранжевого, так как рН в точке эквивалентности находится в области перехода окраски этого индикатора.

Са(HCO3)2 + 2HCl → CaCl2 + 2Н2CO3

Mg(HCO3)2 + 2HCl → MgCl2 + 2H2CO3

До начала титрования рН раствора гидрокарбонатов кальция и магния больше 7 за счет гидролиза солей с участием аниона слабой кислоты. В точке эквивалентности раствор имеет слабокислую реакцию, обусловленную диссоциацией слабой угольной кислоты:

Н2CO3 ↔ HCO3¯ + Н+

Жвр2O) = сэ(солей) • 1000 (ммоль/л).

Общая жесткость воды (общее содержание ионов кальция и магния) определяется с использованием метода комплексонометрии.

Жпост2O) = сэ(солей) • 1000 (ммоль/л).

4.5. Методы редоксиметрии

Методы редоксиметрии, в зависимости от используемых титрантов, подразделяются на:

1) перманганатометрию. Титрант – раствор перманганата калия КMnO4. Индикатор – избыточная капля титранта;

2) иодометрию. Титрант – раствор свободного иода I2 или тиосульфата натрия Na2S2O3. Индикатор – крахмал.

Вычисление молярных масс эквивалентов окислителей и восстановителей

При вычисления молярных масс эквивалентов окислителей и восстановителей исходят из числа электронов, которые присоединяет или отдает в данной реакции молекула вещества. Для нахождения молярной массы эквивалента окислителя (восстановителя) нужно его молярную массу разделить на число принятых (отданных) электронов в данной полуреакции.

Например, в реакции окисления сульфата железа(II) перманганатом калия в кислой среде:

2KMnO4 + 10FeSO4 + 8H2SO4 = 2MnSO4 + 5Fe2(SO4)3 + K2SO4 + 8H2O

1 | MnO4¯ + 8Н+ + 5ē → Mn2+ + 4H2O

5 | Fe2+ – ē → Fe3+

ион MnO4¯ как окислитель принимает пять электронов, а ион Fe2+ как восстановитель отдает один электрон. Поэтому для расчета молярных масс эквивалентов окислителя и восстановителя их молярные массы следует разделить на пять и на один соответственно.

M3(Fe2+) = M(Fe2+) = 55,85 г/моль.

В реакции окисления сульфита натрия перманганатом калия в нейтральной среде:

2KMnO4 + 3Na2SO3 + Н2O → 2MnO2 + 3Na2SO4 + 2KOH

2 | MnO4¯ + 2Н2O + Зē → MnO2 + 4OH¯

3 | SO32- + 2OH¯ + 2ē → SO42- + Н2O

ион MnO4¯ принимает только три электрона, а ион восстановителя SO32- отдает два электрона, следовательно:

Молярные массы эквивалентов окислителей и восстановителей зависят от условий проведения реакций и определяются, исходя из соответствующих полуреакций.

4.6. Фотоколориметрия

Фотоколориметрия – оптический метод анализа, который рассматривает взаимодействие вещества с электромагнитным излучением в видимой области: длина волны (λ) 380–750 нм; волновое число (v) 2,5 104 – 1,5 • 104 см-1; энергия излучения (Е) 1—10 эВ.

Поглощенное световое излучение количественно описывается законом Бугера–Ламберта-Бера:

где А – поглощение вещества, или его оптическая плотность; Т – пропускание образца, т. е. отношение интенсивности света, прошедшего через образец, к интенсивности падающего света, I/I0; с – концентрация вещества (обычно моль/л); l – толщина кюветы (см); ε – молярная поглощательная способность вещества или молярный коэффициент поглощения [л/(моль см)].

Расчет молярного коэффициента поглощения проводят по формуле:

ε = А/(с Ь).



Просмотров: 1698 | Автор: Vlad | Коментариев: 0 | Категория: Пособие для вузов

Внимание !

У вас нет прав для чтения и добавления комментариев. Пожалуйста авторизуйтесь или зарегистрируйтесь.

Добавление комментария

Есть что сказать? Пишите, нам всегда интересно знать Ваше мнение! Все вопросы по поводу данной новости оставляйте здесь, администрация и другие пользователи портала постараются Вам помочь. Пожалуйста, пишите комментарии без орфографических и пунктуационных ошибок.

Часы

Участник конкурса

Рекомендация сайта

Рекомендуем

Мы в Контакте

Топ пользователей



Vlad
Репутация: 11
Постов: 0
Релизов: 179


D@nIl@
Репутация: 10
Постов: 0
Релизов: 543


cilenti2
Репутация: 0
Постов: 0
Релизов: 0


Наталья
Репутация: 0
Постов: 0
Релизов: 0


rochsha170870
Репутация: 0
Постов: 0
Релизов: 0

Статистика

Зарег. на сайте:

Всего: 89
Новых за месяц: 0
Новых за неделю: 0
Новых вчера: 0
Новых сегодня: 0

Из них:

Администраторов: 4
Модератор форума:
Проверенных: 7
Обычных юзеров: 78

Из них:

Парней: 49
Девушек: 40

Онлайн

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Посещаемость

Яндекс.Метрика