Сердце химии

Добро пожаловать на наш портал

На нашем сайте ежедневно публикуются десятки качественных и свежих материалов, которые Вы можете скачать абсолютно бесплатно. Рекомендуем Вам добавить Наш сайт в закладки, а также подписаться на RSS ленту, чтобы не пропускать интересных новостей.
Главная Друзья сайта Главная Контакты Карта сайта

Перевести страницу

Мини-чат

ОК

Опрос

Как вам новый шаблон
javascript:; javascript:;
Всего ответов: 68

Мудрые говорят

Главная » Файлы » Элементы таблицы менделеева » Металлы

ЖЕЛЕЗО

 Просмотров: 698 Автор: D@nIl@
 (Рейтинг: 0.0)

ЖЕЛЕЗО
ЖЕЛЕЗО (Ferrum) Fe, хим. элемент VIII гр. периодич. системы, ат. н. 26, ат. м. 55,847. Состоит из четырех стабильных изотопов: 54Fe (5,84%), 56Fe (91,68%), 57Fе (2,17%), 58Fe (0,31%). Поперечное сечение захвата тепловых нейтронов для прир. смеси изотопов 2,62.10-28 м2. Конфигурация внеш. электронных оболочек 3d64s2; степени окисления +2 и +3 (наиб. характерны), +1, +4, +6, +8; энергия ионизации при последоват. переходе от Fe0 к Fe5+ 7,893, 16,183, 30,65, 57,79 эВ; сродство к электрону 0,58 эВ; электроотрицательность по Полингу 1,8; атомный радиус 0,126 нм, ионные радиусы (в нм, в скобках указаны ко-ординац. числа) для Fe2+ 0,077 (4), 0,092 (6), 0,106 (8), для Fe3+ 0,063 (4), 0,079 (6), 0,092 (8). Железо - один из самых распространенных элементов в природе, его содержание в земной коре составляет 4,65% по массе. Известно св. 300 минералов, из к-рых слагаются месторождения железных руд. Пром. значение имеют руды с содержанием Fe св. 16%. Важнейшие рудные минералы железа: магнетит (магнитный железняк) Fe3O4 (содержит 72,4% Fe), гематит (железный блеск, красный железняк) Fe2O3 (70% Fe), гётит a-FeO(OH), или Fe2O3.H2O, лепидокрокит g-FeO(OH) и гидрогётит (лимонит) Fe2O3.xH2O (ок. 62% Fe), сидерит FeCO3 (48,2% Fe), ильменит FeTiO3 (36,8% Fe). Наряду с полезными примесями - Mn, Cr, Ni, Ti, V, Co - железные руды содержат и вредные примеси - S, P и др. Железо входит в состав прир. силикатов, значительные скопления к-рых могут иметь пром. значение для произ-ва железа или его соед. Различают след. осн. типы железных руд. Бурые железняки - руды гидроксидов Fe(III) (главный минерал - гётит); содержат до 66,1% Fe (чаще 30-55%); имеют осадочное происхождение. Крупнейшие месторождения в СССР, во Франции, в Гвинее. Гематитовые руды, или красные железняки (главный минерал - гематит); содержат обычно 50-65% Fe. Для них характерно залегание богатых руд поверх мощных толщ бедных (30-40% Fe) магнетитовых кварцитов. Крупнейшие месторождения в СССР, США, Канаде, Бразилии, Венесуэле. Магнетитовые руды, или магнитные железняки (главный минерал -магнетит); содержат чаще всего до 45-60% Fe. Верх. горизонты магнетитовых рудных тел обычно частично окислены до гематита (полумартиты и мартиты). Крупнейшие месторождения в СССР и Швеции. Силикатные руды (25-40% Fe) осадочного происхождения, используемые для выплавки чугуна в ГДР, Югославии, ЧССР и ряде др. стран Европы, относятся к группе зеленых слюд-хлоритов. Главные минералы - шамозит Fe4(Fe, Al)2[Al2Si2O10](OH)8 и тюрингит (Mg, Fe)3,5Al1,5[Si2,5Al1,5O10](ОН)6.2О - содержат до 42% Fe. Важнейшие месторождения в ГДР, Австрии и др. Мировые разведанные запасы железных руд составляют 231,9 млрд. т, или 93 млрд. т в пересчете на железо (1980). По запасам железных руд (балансовым - св. 100 млрд. т) СССР занимает первое место в мире. Наиб. запасы железных руд (в млрд. т), кроме СССР, сосредоточены в Бразилии (34), Канаде (26), Австрии (21), США (17), Индии (13), ЮАР (9), Швеции (4,5) и во Франции (4). Перспективно использование бедных железом горных пород и железомарганцевых конкреций. Мировые запасы последних оцениваются в 3000 млрд. т (1984). В чрезвычайно редких случаях железо встречается в земной коре в составе минерала иоцита FeO (аналог к-рого в технике наз. вюститом), а также в виде самородного железа - метеорного и теллурического (земного происхождения). Теллурич. железо образуется в результате восстановления оксидов и сульфидов железа углеродом из железистой магмы и при подземных пожарах угля, контактирующего с пластами руды. Железо входит в состав гемоглобина.
Свойства. Железо - блестящий серебристо-белый пластичный металл. При обычном давлении существует в четырех кристаллич. модификациях. До 917 °С существует a-Fe с объемноцентрир. кубич. решеткой (а = 0,286645 нм, z = 2, пространств. группа Im3m); a-Fe ферромагнитно, но при 769 °С (точка Кюри) переходит в парамагн. состояние без изменения сингонии и др. св-в, кроме магнитных; DH0 перехода 1,72 кДж/моль. Парамагн. железо (b-Fe) устойчиво в интервале 769-917 °С. В интервале 917-1394 °С существует g-Fe с гранецентрир. кубич. решеткой (при 950 °С а = 0,3656 нм, z = 4, пространств. группа Fm3m); DH0 перехода b : g 0,91 кДж/моль. Выше 1394°С существует d-Fe с объемноцентрир. кубич. решеткой (при 1425°С а = 0,293 нм, z = 2, пространств. группа Im3m); DH0 перехода g : d 0,63 кДж/моль. При высоких давлениях существует e-Fe с гексагон. плотноупакованной решеткой, к-рое также образуется и при нормальном давлении при легировании железа рядом элементов. Ниже приводятся данные о физ. св-вах железа с общим содержанием примесей не более 0,01%. Т. пл. 1535 °С (DH0пл 16,6 кДж/моль), т. кип. 2750 °С (DH0исп 354,3 кДж/моль). Плотн. (в г/см3): a-Fe 7,87 (20 °С), 7,67 (600 °С); g-Fe 7,59 (1000 °С); d-Fe 7,409; жидкого железа 7,024 (1538°С), 6,962 (1600°С), 6,76 (1800°С); ур-ние температурной зависимости плотности жидкого карбонильного железа (см. ниже): d = 8,618 - 8,83.10-4T г/см3. Теплоемкость медленно увеличивается с ростом т-ры до 523 К, затем резко возрастает, достигая максимума в точке Кюри, после чего снижается; С0р 25,14 Дж/(моль.К); S0298 27,30 Дж/(моль.К); ур-ние температурной зависимости давления пара: lgp (в мм рт. ст.) = - 19710/T - l,271gT + 13,27 (1808-3023 К); температурный коэф. линейного расширения 12.10-6 К-1 (298 К), ур-ние его температурной зависимости: a = 11,3.10-6 + 17,6.10-8t - 1,68.10-11t2 oС-1 (0-800°С). Теплопроводность [Вт/(м.К)], 132 (100 К), 80,3 (300 К), 69,4 (400 К), 32,6 (1000 К), 31,8 (1500 К); для армко-железа (см. ниже) 74,7 (273 К), 72,8 (298 К), 67,6 (373 К). Для 99,99%-ного железа g в атмосфере Не 1,72 Н/м (1535°С); динамич. вязкость в интервале 1535-1700°С изменяется от 6,8.10-4 до 5,6.10-4 Па.с. Для 99,99%-ного железа r 0,0327 мкОм.см (4,2 К), 9,71 мкОм.см (293 К), температурный коэф. r 6,51.10-3 К-1 (273-373 К); т-ра перехода в сверхпроводящее состояние 0,1125 К. Магн. проницаемость 1,45.106 (для монокристалла), магн. индукция насыщения 2,18 Тл; коэрцитивная сила 5-6 А/м (для карбонильного железа). Для особо чистого железа (<10-7% С + N, 10-5% О, < 10-5% S) sраст 50 МПа, предел текучести 20 МПа при скорости деформации 5.10-4 с-1 и размере зерна 1 мм; ударная вязкость более 300 Дж/см2; т-ра перехода в хрупкое состояние -85°С; для совершенных кристаллов ("усов") sраст 13,4 ГПа. Твердость по Моосу 4-5. Для отожженного образца относит. удлинение 40-50%, модуль сдвига 76,4-78,4 ГПа, твердость по Бринеллю 588-686 МПа. Железо - металл умеренной хим. активности. Стандартный электродный потенциал Fe2+/Fe0 -0,447 В, Fe3+/Fe0 -0,037 В, Fе3+/Fе2+ +0,771 В. Жидкое железо неограниченно растворяет Al, Cu, Mn, Ni, Co, Si, Ti, хорошо растворяет V, Сr и Pt, ограниченно - Mo, Sn, С, S, P, As, H2, N2, О2, не растворяет Pb, Ag, Bi. С углеродом образует твердые р-ры внедрения - феррит и мартенсит с a-Fe, аустенит с g-Fe. В железа сплавах углерод присутствует также в виде графита и цементита Fe3C (см. табл.). В зависимости от содержания С в железе различают: мягкое железо (< 0,2% С), сталь (0,2-1,7% С) и чугун (1,7-5% С). В сухом воздухе при т-рах до 200 °С на пов-сти компактного железа образуется тончайшая оксидная пленка, защищающая металл от дальнейшего окисления. Выше 200 °С скорость коррозии железа увеличивается, образуется слой окалины; внутр. зона ее состоит из вюстита FеxО (х = 0,89-0,95), поверх него лежит слой Fe3O4, затем Fe2O3. Ржавление железа (атм. коррозия) во влажном воздухе, особенно содержащем капли морской воды, идет быстрее; ржавчина содержит также и гидроксиды железа, в осн. FeO(OH). О кислородных соед. железа см. Железа оксиды. Железо не раств. в воде и р-рах холодных щелочей, реагирует с разб. к-тами, образуя соли Fe(II), и горячими конц. р-рами щелочей. Конц. HNO3 и H2SO4 пассивируют железо благодаря образованию нерастворимой в к-тах оксидной пленки. Азот в малых концентрациях образует с железом твердые р-ры внедрения, в больших - нитриды Fe2N и др. При нормальном давлении ок. 917°С р-римость N2 в a-Fe до 0,01 ат. %, в g-Fe ок. 0,1 ат. %. Железо способно поглощать Н2 при травлении к-тами и в процессе катодного выделения железа при электролизе. Адсорбируясь на дефектах структуры, водород резко снижает прочность и пластичность железа (т. наз. водородная хрупкость). Твердое железо поглощает Н2 с образованием твердых р-ров внедрения. Р-римость Н2 в железе при комнатной т-ре менее 0,005%, в расплавленном железе - почти в 25 раз больше. Гидриды железа существуют только при высоких давлениях Н2; известны гидриды интерметаллидов железа, напр. TiFeH2 (см. Гидриды). С СО железо образует железа карбонилы, в к-рых железо формально проявляет нулевую степень окисления. При нагр. железо реагирует с галогенами, особенно легко с Сl2, т. к. образующийся FeCl3 летуч (см. Железа хлориды) и не создает на пов-сти металла защитной пленки. Напротив, FeF3 нелетуч, поэтому компактное железо устойчиво к действию F2 до 250-300 °С.
121_140-45.jpg
Р-ция железа с S экзотермична, начинается при слабом нагревании, при этом образуется нестехиометрич. сульфид, близкий по составу к FeS. В природе распространен минерал пирит FeS2 (см. Железа сульфиды). Фосфор при малых концентрациях дает с железом ограниченные твердые р-ры, при больших концентрациях - фосфиды, из к-рых наиб. устойчивы Fe3P, Fe2P, FeP и FeP2. Железо образует два ряда солей - соед. Fe(II) и Fe(III). Соли Fe(II) гидролизуются, в числе продуктов гидролиза образуются разл. полиядерные комплексы; на воздухе окисляются до Fe(III). Более устойчивы двойные соли, напр., соль Мора FeSO4.(NH4)2SO4.6H2O (см. Железа сульфаты), и комплексные. В водном р-ре Fe2+ образует аквакомплексы, напр., состава [Fe(H2O)6]2+ , часто сохраняющиеся и в высших кристаллогидратах солей. Р-ры солей Fe2+ практически бесцветны, т. к. окраска [Fe(H2O)6]2+ очень слабая (зеленоватая). При действии Na2CO3 на р-ры Fe2+ осаждается карбонат FeCO3, к-рый при действии избытка СО2 переходит в р-р в виде Fe(HCO3)2. Наиб. прочные комплексы Fe(II) - цианистые, напр. K4[Fe(CN)6] (см. Калия гексацианоферраты). Соли Fe(II) - восстановители в водных р-рах. Соли Fe(III) образуются при окислении солей Fe(II) и др. способами; гидролизуются (с образованием разл. полиядерных комплексов) сильнее, чем соли Fe(II). Гидратир. ион Fe3+ почти бесцветен, но р-ры солей Fe3+ обычно имеют бурую окраску из-за образования гидроксосоединений. Р-ры Fe3+ с MNCS дают кроваво-красный р-р тиоцианата Fe(NCS)3, с K4[Fe(CN)6] - ярко-синий осадок берлинской лазури (турнбулевой сини) приблизительного состава KFeIII[FeII(CN)6]. При взаимод. р-ров солей Fe(III) с (NH4)2C2O4 образуется оксалат Fe2(C2O4)3 (т. разл. 100°С), применяемый для получения светокопировальной бумаги. Сульфат Fe(III) образует двойные сульфаты (см. Квасцы). Амминокомплексы Fe(II) и Fe(III) образуются при действии NH3 на безводные соли; водой разлагаются. Степень окисления +6 железо проявляет в ферратах(VI), напр. BaFeO4, K2FeO4, +4 - в тетранитрозиле Fe(NO)4, к-рый образуется при действии NO на железо при повыш. давлении, и ферратах(IV) составов MIIFeO3, MI2FeO3, MI4FeO4, легко образующихся в водных щелочных средах при окислении О2. При анодном растворении железа при высоких плотностях тока образуется феррат(VШ) неопределенного состава. Об орг. соединениях железа см. Железоорганические соединения, Ферроцен.
Получение. Схема металлургич. передела железных руд включает дробление, измельчение, обогащение магн. сепарацией (до содержания Fe 64-68%), получение концентрата (74-83% Fe), плавку; осн. массу железа выплавляют в виде чугуна и стали (см. Железа сплавы). Технически чистое железо, или армко-железо (0,02% С, 0,035% Мn, 0,14% Сr, 0,02% S, 0,015% Р), выплавляют из чугуна в сталеплавильных печах или кислородных конвертерах. Чистое железо получают: восстановлением оксидов железа твердым (коксик, кам.-уг. пыль), газообразным (Н2, СО, их смесь, прир. конвертированный газ) или комбинир. восстановителем; электролизом водных р-ров или расплавов солей железа; разложением пентакарбонила Fe(CO)5 (карбонильное железо). Сварочное, или кричное, железо производят окислением примесей малоуглеродистой стали железистым шлаком при 1350°С или восстановлением из руд твердым углеродом. Восстановлением оксидов железа при 750-1200°С получают губчатое железо (97-99% Fe) - пористый агломерат частиц железа; пирофорно; в горячем состоянии поддается обработке давлением. Карбонильное железо (до 0,00016% С) получают разложением Fe(CO)5 при 300 °С в среде NH3 с послед. восстановит. отжигом в среде Н2 при 500-600 °С; порошок с размером частиц 1-15 мкм; перерабатывается методами порошковой металлургии. Особо чистое железо получают зонной плавкой и др. методами.
Определение. Качественно Fe(II) обнаруживают по образованию берлинской лазури с K3[Fe(CN)6], Fe(III) - пo образованию ее же с K2[Fe(CN)6] или Fe(CNS)3 с тиоцианатом аммония или К. Количественно Fe(II) определяют с помощью дихроматометрии или перманганатометрии, Fе(Ш) - иодометрич. или комплексонометрич. титрованием с трилоном Б и индикатором (сульфосалициловая к-та), Fe(II) и Fe(III) - колориметрически с сульфосалициловой к-той. Для определения железа используют также спектральный, рентгенофлуоресцентный и термометрич. методы, мёссбауэровскую спектроскопию и др. Примеси в железе определяют методами газового анализа, масс-спектрометрическим, активационным, кондуктометрическим, спектральным и др.
Применение. Технически чистое железо - материал для сердечников электромагнитов и якорей электромашин, пластин аккумуляторов. Карбонильное железо используют для нанесения тончайших пленок и слоев на магнитофонные ленты, как катализатор, антианемич. ср-во и др. Из губчатого железа выплавляют высококачеств. стали. Железный порошок используют для сварки, а также для цементации меди. Искусств. радиоактивные изотопы 55Fe (T1/2 2,6 ч) и 59Fe (Tl/2 45,6 сут) - изотопные индикаторы. Лит.. Федоров А. А., Новые методы анализа металлических порошков и шлаков, М., 1971, с. 62-109. 226-36; Каменецкая Д. С., Пилецкая И. Б., Ширяев В. И., Железо высокой степени чистоты. М., 1978; Каспарова О. В. [и др.], "Защита металлов". 1985, т. 21. № 3. с. 339-45; Перфильев Ю. Д. [и др.]. "Докл. АН СССР". 1987. т. 296, № 6, с. 1406-09. См. также лит. при ст. Железа сплавы. Е. Ф. Вегман.



Просмотров: 698 | Автор: D@nIl@ | Коментариев: 0 | Категория: Металлы

Внимание !

У вас нет прав для чтения и добавления комментариев. Пожалуйста авторизуйтесь или зарегистрируйтесь.

Добавление комментария

Есть что сказать? Пишите, нам всегда интересно знать Ваше мнение! Все вопросы по поводу данной новости оставляйте здесь, администрация и другие пользователи портала постараются Вам помочь. Пожалуйста, пишите комментарии без орфографических и пунктуационных ошибок.

Часы

Участник конкурса

Рекомендация сайта

Рекомендуем

Мы в Контакте

Топ пользователей



Vlad
Репутация: 11
Постов: 0
Релизов: 179


D@nIl@
Репутация: 10
Постов: 0
Релизов: 543


rochsha170870
Репутация: 0
Постов: 0
Релизов: 0


my-life-my-rules
Репутация: 0
Постов: 0
Релизов: 0


mihail-barmin2010
Репутация: 0
Постов: 0
Релизов: 0

Статистика

Зарег. на сайте:

Всего: 91
Новых за месяц: 1
Новых за неделю: 0
Новых вчера: 0
Новых сегодня: 0

Из них:

Администраторов: 4
Модератор форума:
Проверенных: 7
Обычных юзеров: 80

Из них:

Парней: 49
Девушек: 42

Онлайн

Онлайн всего: 1
Гостей: 1
Пользователей: 0

Посещаемость

Яндекс.Метрика